Advertisement

Archiv der Mathematik

, Volume 110, Issue 1, pp 9–18 | Cite as

Modules over cluster-tilted algebras that do not lie on local slices

  • Ibrahim Assem
  • Ralf Schiffler
  • Khrystyna Serhiyenko
Article
  • 28 Downloads

Abstract

We characterize the indecomposable transjective modules over an arbitrary cluster-tilted algebra that do not lie on a local slice, and we provide a sharp upper bound for the number of (isoclasses of) these modules.

Keywords

Cluster-tilted algebra Relation–extension Auslander–Reiten quiver Local slice 

Mathematics Subject Classification

16G20 16G70 13F60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Assem, T. Brüstle, and R. Schiffler, Cluster-tilted algebras as trivial extensions, Bull. Lond. Math. Soc. 40 (2008), 151–162.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    I. Assem, T. Brüstle, and R. Schiffler, Cluster-tilted algebras and slices, J. Algebra 319 (2008), 3464–3479.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    I. Assem, R. Schiffler, and K. Serhiyenko, Cluster-tilted and quasi-tilted algebras, J. Pure Appl. Alg. 221 (2017), 2266–2288.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    I. Assem, D. Simson, and A. Skowroński, Elements of the Representation Theory of Associative Algebras, 1: Techniques of Representation Theory, London Mathematical Society Student Texts 65, Cambridge University Press, Cambridge 2006.CrossRefMATHGoogle Scholar
  5. 5.
    A. B. Buan, R. Marsh, M. Reineke, I. Reiten, and G. Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), 572–618.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    A. B. Buan, R. Marsh, and I. Reiten, Cluster-tilted algebras, Trans. Amer. Math. Soc. 359 (2007), 323–332MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    P. Caldero, F. Chapoton, and R. Schiffler, Quivers with relations arising from clusters (\(A_n\) case), Trans. Amer. Math. Soc. 358 (2006), 1347–1364.MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    O. Kerner, More Representations of Wild Quivers, In: K. Igusa, A. Martsinkovsky, and G. Todorov (Eds.), Expository Lectures on Representation Theory, 35–56, American Mathematical Society, Providence, RI, 2014.Google Scholar
  9. 9.
    C.M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math., vol. 1099, Springer-Verlag, Berlin, 1984.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Ibrahim Assem
    • 1
  • Ralf Schiffler
    • 2
  • Khrystyna Serhiyenko
    • 3
  1. 1.Département de MathématiquesUniversité de SherbrookeSherbrookeCanada
  2. 2.Department of MathematicsUniversity of ConnecticutStorrsUSA
  3. 3.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations