Archiv der Mathematik

, Volume 110, Issue 3, pp 205–212 | Cite as

Lifting endo-p-permutation modules

  • Caroline LassueurEmail author
  • Jacques Thévenaz


We prove that all endo-p-permutation modules for a finite group are liftable from characteristic \(p>0\) to characteristic 0.


Endo-permutation p-permutation Sources 

Mathematics Subject Classification

Primary 20C20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful to Radha Kessar and Markus Linckelmann, who pointed out a gap in an earlier version of the proof of Lemma 4.1 and kindly suggested an alternative argument. They also thank Nadia Mazza for useful discussions. The first author gratefully acknowledges partial funding by the funding scheme TU Nachwuchsring of the TU Kaiserslautern


  1. 1.
    J. L. Alperin, Lifting endo-trivial modules, J. Group Theory 4 (2001), 1–2.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    D. Benson, Modular representation theory: new trends and methods, Lecture Notes in Mathematics, vol. 1081, Springer-Verlag, Berlin, 1984.Google Scholar
  3. 3.
    R. Boltje and B. Külshammer, The ring of modules with endo-permutation source, Manuscripta Math. 120 (2006), 359–376.Google Scholar
  4. 4.
    S. Bouc, The Dade group of a \(p\)-group, Invent. Math. 164 (2006), 189–231.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    E. C. Dade, Endo-permutation modules over p-groups, I, Ann. of Math. (2) 107 (1978), 459–494.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    E. C. Dade, Endo-permutation modules over p-groups, II, Ann. of Math. (2) 108 (1978), 317–346.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    R. Kessar And M. Linckelmann, Descent of equivalences and character bijections, Preprint, 2017, arXiv:1705.07227.
  8. 8.
    C. Lassueur And G. Malle, E. Schulte, Simple endotrivial modules for quasi-simple groups, J. Reine Angew. Math. 712 (2016), 141–174.MathSciNetzbMATHGoogle Scholar
  9. 9.
    L. Puig, On the Local Structure of Morita and Rickard Equivalences between Brauer Blocks, Progr. Math., 178, Birkhäuser, Basel, 1999.Google Scholar
  10. 10.
    J.-M. Urfer, Modules d’endo-\(p\)-permutation, PhD thesis no. 3544, EPFL, 2006,
  11. 11.
    J.-M. Urfer, Endo-\(p\)-permutation modules, J. Algebra 316 (2007), 206–223.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    J. Thévenaz, \(G\)-Algebras and Modular Representation Theory, Clarendon Press, Oxford, 1995.zbMATHGoogle Scholar
  13. 13.
    J. Thévenaz, Endo-permutation modules, a guided tour, In: Group Representation Theory, M. Geck, D. Testerman, and J. Thévenaz (Eds.), 115–147, EPFL Press, Lausanne, 2007.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.FB Mathematik, TU KaiserslauternKaiserslauternGermany
  2. 2.EPFL, Section de MathématiquesLausanneSwitzerland

Personalised recommendations