Archiv der Mathematik

, Volume 108, Issue 3, pp 225–232 | Cite as

Most small \({\varvec{p}}\)-groups have an automorphism of order 2



Let f(pn) be the number of pairwise nonisomorphic p-groups of order \(p^n\), and let g(pn) be the number of groups of order \(p^n\) whose automorphism group is a p-group. We prove that the limit, as p grows to infinity, of the ratio g(pn) / f(pn) equals 1/3 for \(n=6,7\).


Lie rings Isoclinism 

Mathematics Subject Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, Computational algebra and number theory (London, 1993), J. Symbolic Comput. 24 (1997), 235–265.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    P. A. Brooksbank, J. Maglione, and J. B. Wilson, A fast isomorphism test for groups whose Lie algebra has genus 2, to appear, J. Algebra, arXiv:1508.03033.
  3. 3.
    P. A. Brooksbank and J. B. Wilson, Groups acting on tensor products, J. Pure Appl. Algebra 218 (2014), 405–416.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    G. T. Helleloid and U. Martin, The automorphism group of a finite \(p\)-group, J. Algebra 312 (2007), 294–329.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    J. Maglione, Efficient characteristic refinements for finite groups, J. Symb. Comput (2016). doi:10.1016/j.jsc.2016.07.007.
  6. 6.
    A. Mann, Some questions about \(p\)-groups, J. Austral. Math. Soc. Ser. A 67 (1999), 356–379.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    U. Martin, Almost all \(p\)-group have automorphism group a \(p\)-group, Bull. Amer. Math. Soc. (N.S.) 15 (1986), 78–82.Google Scholar
  8. 8.
    M. F. Newman, E. A. O’Brien, and M. R. Vaughan-Lee, Groups and nilpotent Lie rings whose order is the sixth power of a prime, J. Algebra 278 (2004), 383–401.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    E. A. O’Brien and M. R. Vaughan-Lee, The groups with order \(p^7\) for odd prime \(p\), J. Algebra 292 (2005), 243–258.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    M. Vaughan-Lee and B. Eick, LiePRing—A GAP Package for computing with nilpotent Lie rings of prime-power order (2014).
  11. 11.
    J. B. Wilson, More characteristic subgroups, Lie rings, and isomorphism tests for \(p\)-groups, J. Group Theory 16 (2013), 875–897.MathSciNetMATHGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Department of MathematicsColorado State UniversityFort CollinsUSA

Personalised recommendations