Advertisement

Archiv der Mathematik

, Volume 108, Issue 1, pp 99–112 | Cite as

On the Vergne conjecture

  • Peter Hochs
  • Yanli Song
Article
  • 72 Downloads

Abstract

Consider a Hamiltonian action by a compact Lie group on a possibly non-compact symplectic manifold. We give a short proof of a geometric formula for the decomposition into irreducible representations of the equivariant index of a \({{\mathrm{{{\mathrm{Spin}}}^c}}}\)-Dirac operator in this context. This formula was conjectured by Vergne in (Eur Math Soc Zürich I:635–664, 2007) and proved by Ma and Zhang in (Acta Math 212:11–57, 2014).

Keywords

Vergne conjecture Geometric quantisation Symplectic reduction 

Mathematics Subject Classification

Primary 53D50 Secondary 58J20 53D20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to thank Maxim Braverman, Nigel Higson, Paul-Émile Paradan, Eckhard Meinrenken, and Michèle Vergne for many useful discussions. Special thanks go to Xiaonan Ma and Weiping Zhang for proposing this topic and kind help. Peter Hochs was supported by the European Union, through Marie Curie fellowship PIOF-GA-2011-299300.

References

  1. 1.
    M. Atiyah and R. Bott, The moment map and equivariant cohomology, Topology 23 (1984), 1–28.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    M. Braverman, Index theorem for equivariant Dirac operators on noncompact manifolds, \(K\)-Theory 23 (2002), 61–101.Google Scholar
  3. 3.
    M. Braverman, The index theory on non-compact manifolds with proper group action, J. Geom. Phys. 98 (2015), 275–284.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    V. Guillemin and S. Sternberg, Homogeneous quantization and multiplicities of group representations, J. Funct. Anal. 47 (1982), 344–380.Google Scholar
  5. 5.
    V. Guillemin and S. Sternberg, Geometric quantization and multiplicities of group representations, Invent. Math. 67 (1982), 515–538.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    V. Guillemin, Reduced phase spaces and Riemann-Roch, In: Lie theory and geometry, Progr. Math., 123, pages 305–334, Birkhäuser Boston, Boston, MA, 1994.Google Scholar
  7. 7.
    P. Hochs and V. Mathai, Geometric quantization and families of inner products, Adv. Math. 282 (2015), 362–426.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    P. Hochs and Y. Song, An equivariant index for proper actions I, J. Funct. Anal., to appear, 2016. (doi: 10.1016/j.jfa.2016.08.024, 44 pp.).
  9. 9.
    P. Hochs and Y. Song, An equivariant index for proper actions II: properties and applications, 2016. (arXiv:1602.02836, 39 pp.).
  10. 10.
    P. Hochs and Y. Song, An equivariant index for proper actions III: the invariant and discrete series indices, Differential Geom. Appl. 49 (2016), 1–22.Google Scholar
  11. 11.
    P. Hochs and Y. Song, Equivariant indices of Spin\(^c\)-dirac operators for proper moment maps, Duke Math. J., to appear, 2016. (arXiv:1503.00801, 60 pp.).
  12. 12.
    T. Kawasaki, The index of elliptic operators, over \(V\)-manifolds, Nagoya Math. J. 84 (1981), 135–157.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    F. C. Kirwan, Partial desingularisations of quotients of nonsingular varieties and their Betti numbers, Ann. Math. (2) 122 (1985), 41–85.Google Scholar
  14. 14.
    E. Meinrenken, Symplectic surgery and the Spin\(^c\)-Dirac operator, Adv. Math. 134 (1998), 240–277.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    E. Meinrenken and R. Sjamaar, Singular reduction and quantization, Topology 38 (1999), 699–762.Google Scholar
  16. 16.
    X. Ma and W. Zhang, Geometric quantization for proper moment maps, C. R. Math. Acad. Sci. Paris 347 (2009), 389–394.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    X. Ma and W. Zhang, Geometric quantization for proper moment maps: the Vergne conjecture, Acta Math. 212 (2014), 11–57.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    P.-É. Paradan, Localization of the Riemann-Roch character, J. Funct. Anal. 187 (2001), 442–509.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    P.-É. Paradan, \({\rm Spin}^c\)-quantization and the \(K\)-multiplicities of the discrete series, Ann. Sci. École Norm. Sup. (4) 36 (2003), 805–845.Google Scholar
  20. 20.
    P.-É. Paradan, Formal geometric quantization II, Pacific J. Math. 253 (2011), 169–211.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    P.-É. Paradan and M. Vergne, Witten non abelian localization for equivariant \(K\)-theory, and the \([Q,R]=0\) theorem, 2015. (arXiv:1504.07502, 90 pp.)
  22. 22.
    Y. Tian and W. Zhang, An analytic proof of the geometric quantization conjecture of Guillemin-Sternberg, Invent. Math. 132 (1998), 229–259.Google Scholar
  23. 23.
    Y. Tian and W. Zhang, Quantization formula for symplectic manifolds with boundary, Geom. Funct. Anal. 9 (1999), 596–640.Google Scholar
  24. 24.
    M. Vergne, Applications of equivariant cohomology, In: International Congress of Mathematicians Vol. I, pages 635–664, Eur. Math. Soc., Zürich, 2007.Google Scholar
  25. 25.
    E. Witten, Two-dimensional gauge theories revisited, J. Geom. Phys. 9 (1992), 303–368.Google Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.University of AdelaideAdelaideAustralia
  2. 2.Dartmouth CollegeHanoverUSA

Personalised recommendations