Advertisement

Archiv der Mathematik

, Volume 107, Issue 5, pp 499–509 | Cite as

The Riemann constant for a non-symmetric Weierstrass semigroup

  • Jiryo Komeda
  • Shigeki Matsutani
  • Emma Previato
Article

Abstract

The zero divisor of the theta function of a compact Riemann surface X of genus g is the canonical theta divisor of Pic\({^{(g-1)}}\) up to translation by the Riemann constant \({\Delta}\) for a base point P of X. The complement of the Weierstrass gaps at the base point P gives a numerical semigroup, called the Weierstrass semigroup. It is classically known that the Riemann constant \({\Delta}\) is a half period, namely an element of \({\frac{1}{2} \Gamma_\tau}\) , for the Jacobi variety \({\mathcal{J}(X)=\mathbb{C}^{g}/\Gamma_\tau}\) of X if and only if the Weierstrass semigroup at P is symmetric. In this article, we analyze the non-symmetric case. Using a semi-canonical divisor D 0, we express the relation between the Riemann constant \({\Delta}\) and a half period in the non-symmetric case. We point out an application to an algebraic expression for the Jacobi inversion problem. We also identify the semi-canonical divisor D 0 for trigonal pointed curves, namely with total ramification at P.

Keywords

Riemann constant Non-symmetric Weierstrass semigroup Theta function Abel map Sigma function 

Mathematics Subject Classification

Primary 14H55 Secondary 14H50 14K25 14H40 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.D. Fay, Theta functions on Riemann Surfaces, Lecture Notes in Mathematics, Vol. 352, Springer-Verlag, Berlin-New York, 1973.Google Scholar
  2. 2.
    J. Herzog, Generators and relations of Abelian semigroup and semigroup ring, Manuscripta Math. 3 (1970), 175-193Google Scholar
  3. 3.
    Lewittes J.: Riemann surfaces and the theta functions. Acta Math. 111, 37–61 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    H. M. Farkas and S. Zemel, Generalizations of Thomae’s Formula for Zn Curves (Developments in Mathematics), Springer, New York, 2010.Google Scholar
  5. 5.
    J. Komeda, S. Matsutani, and E. Previato, The sigma function for Weierstrass semigroup \({\langle3,7,8\rangle}\) and \({\langle6,13,14,15,16\rangle}\), Int. J. Math 24 (2013), 1350085 (58 pages).Google Scholar
  6. 6.
    S. Matsutani and J. Komeda, Sigma functions for a space curve of type (3, 4, 5), J. Geom. Symm. Phys. 30 (2013), 75-91.Google Scholar
  7. 7.
    D. Mumford, Tata Lectures on Theta I, Progress in Mathematics, 28, Birkhäuser, Boston, 1983.Google Scholar
  8. 8.
    D. Mumford, Tata Lectures on Theta II, Progress in Mathematics, 43, Birkhäuser, Boston, 1984.Google Scholar
  9. 9.
    Pinkham H.C.: Deformation of algebraic varieties with G m action. Astérisque 20, 1–131 (1974)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Shiga H.: On the representation of the Picard modular function by \({\theta}\) constants I-II. Publ. RIMS, Kyoto Univ. 24, 311–360 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Stöhr K.-O.: On the moduli spaces of Gorenstein curves with symmetric Weierstrass semigroups. J. Reine Angew. Math. 441, 189–213 (1993)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Jiryo Komeda
    • 1
  • Shigeki Matsutani
    • 2
  • Emma Previato
    • 3
  1. 1.Department of Mathematics, Center for Basic Education and Integrated LearningKanagawa Institute of TechnologyAtsugiJapan
  2. 2.Industrial MathematicsNational Institute of Technology, Sasebo CollegeSaseboJapan
  3. 3.Department of Mathematics and StatisticsBoston UniversityBostonU.S.A.

Personalised recommendations