Archiv der Mathematik

, Volume 106, Issue 6, pp 573–580 | Cite as

Non-closed isometry-invariant geodesics

Article
  • 76 Downloads

Abstract

Let c be a non-closed and bounded geodesic in a complete Riemannian manifold M. Assume that c is invariant under an isometry A of M and that c is not contained in the set of fixed points of A. We prove that, for some \({k\ge 2}\), the geodesic flow line ċ corresponding to c is dense in a k-dimensional torus N embedded in TM. In particular, every geodesic with initial vector in N is A-invariant.

Mathematics Subject Classification

53C22 58E10 57S20 

Keywords

Isometry-invariant geodesics Morse-Bott theory Actions of non-compact abelian Lie groups 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.L. Besse, Manifolds all of whose geodesics are closed, Springer-Verlag, Berlin-New York, 1978Google Scholar
  2. 2.
    Grove K.: Condition (C) for the energy integral on certain path-spaces and applications to the theory of geodesics. J. Differential Geom. 8, 207–233 (1973)MathSciNetMATHGoogle Scholar
  3. 3.
    Grove K.: Isometry-invariant geodesics. Topology 13, 281–292 (1974)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Grove K., Tanaka M.: On the number of invariant closed geodesics, Acta Math. 140, 33–48 (1978)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Hingston N.: Isometry-invariant geodesics on spheres. Duke Math. J. 57, 761–768 (1988)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Mazzucchelli M.: Isometry-invariant geodesics and the fundamental group. Math. Ann. 362, 265–280 (2015)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Papadima S., Paunescu L.: Isometry-invariant geodesics and nonpositive derivations of the cohomology. J. Differential Geom. 71, 159–176 (2005)MathSciNetMATHGoogle Scholar
  8. 8.
    Rademacher H.-B.: Metrics with only finitely many isometry invariant geodesics. Math. Ann. 284, 391–407 (1989)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Singer D., Gluck H.: The existence of nontriangulable cut loci. Bull. Amer. Math. Soc. 82, 599–602 (1976)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Tanaka M.: On the existence of infinitely many isometry-invariant geodesics. J. Differential Geom. 17, 171–184 (1982)MathSciNetMATHGoogle Scholar
  11. 11.
    Tanaka M.: An elementary proof of the existence of uncountably many non-closed isometry invariant geodesics. Geom. Dedicata 40, 361–366 (1991)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Abteilung Reine MathematikMathematisches Institut der Universität FreiburgFreiburgGermany

Personalised recommendations