Archiv der Mathematik

, Volume 105, Issue 6, pp 539–555 | Cite as

The asymptotic distribution of Andrews’ smallest parts function

  • Josiah Banks
  • Adrian Barquero-Sanchez
  • Riad Masri
  • Yan Sheng
Article
  • 115 Downloads

Abstract

In this paper, we use methods from the spectral theory of automorphic forms to give an asymptotic formula with a power saving error term for Andrews’ smallest parts function spt(n). We use this formula to deduce an asymptotic formula with a power saving error term for the number of 2-marked Durfee symbols associated to partitions of n. Our method requires that we count the number of Heegner points of discriminant −D < 0 and level N inside an “expanding” rectangle contained in a fundamental domain for \({\Gamma_0(N)}\).

Mathematics Subject Classification

11M41 

Keywords

Durfee symbol Partition Smallest parts function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Ahlgren and N. Andersen, Algebraic and transcendental formulas for the smallest parts function, Preprint available at: arXiv:1504.02500
  2. 2.
    Ahlgren S., Bringmann K., Lovejoy J.: \({\ell}\)-adic properties of smallest parts functions. Adv. Math. 228, 629–645 (2011)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Andrews G. E.: Partitions, Durfee symbols, and the Atkin–Garvan moments of ranks. Invent. Math. 169, 37–73 (2007)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Andrews G. E.: The number of smallest parts in the partitions of n, J. Reine Angew. Math. 624, 133–142 (2008)MATHMathSciNetGoogle Scholar
  5. 5.
    Atkin A. O. L., Garvan F.: Relations between the ranks and cranks of partitions. Ramanujan J. 7, 343–366 (2003)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Bringmann K.: On the explicit construction of higher deformations of partition statistics. Duke Math. J. 144, 195–233 (2008)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Bringmann K., Ono K.: An arithmetic formula for the partition function. Proc. Amer. Math. Soc. 135, 3507–3514 (2007)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Bruinier J. H., Jenkins P., Ono K.: Hilbert class polynomials and traces of singular moduli. Math. Ann. 334, 373–393 (2006)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Bruinier J. H., Ono K.: Algebraic formulas for the coefficients of half-integral weight harmonic weak Maass forms. Adv. Math. 246, 198–219 (2013)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Duke W.: Modular functions and the uniform distribution of CM points. Math. Ann. 334, 241–252 (2006)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Folsom A., Masri R.: Equidistribution of Heegner points and the partition function. Math. Ann. 348, 289–317 (2010)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Folsom A., Ono K.: The spt-function of Andrews. Proc. Natl. Acad. Sci. USA 105, 20152–20156 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Garvan F.: Congruences for Andrews’ smallest parts partition function and new congruences for Dyson’s rank. Int. J. Number Theory 6, 1–29 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gross B., Zagier D.: Heegner points and derivatives of L-series. Invent. Math. 84, 225–320 (1986)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    H. Iwaniec, Introduction to the spectral theory of automorphic forms, Biblioteca de la Revista Matemática Iberoamericana. Revista Matematica Iberoamericana, Madrid, 1995. xiv+247 pp.Google Scholar
  16. 16.
    H. Iwaniec, Topics in classical automorphic forms, Graduate Studies in Mathematics, 17. American Mathematical Society, Providence, RI, 1997. xii+259 pp.Google Scholar
  17. 17.
    R. Masri, Fourier coefficients of harmonic weak Maass forms and the partition function, Amer. J. Math. 137, 1061–1097 (2015)Google Scholar
  18. 18.
    R. Masri, Singular moduli and the distribution of partition ranks modulo 2, Mathematical Proceedings of the Cambridge Philosophical Society, to appear.Google Scholar
  19. 19.
    Ono K.: Congruences for the Andrews spt function. Proc. Natl. Acad. Sci. USA 108, 473–476 (2011)MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    M. P. Young, Weyl-type hybrid subconvexity bounds for twisted L-functions and Heegner points on shrinking sets, Journal of the European Mathematical Society, to appear. Preprint available at: arXiv:1405.5457v2
  21. 21.
    D. Zagier, Traces of singular moduli, Motives, polylogarithms and Hodge theory, Part I (Irvine, CA, 1998), 211–244, Int. Press Lect. Ser., 3, I, Int. Press, Somerville, MA, 2002.Google Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Josiah Banks
    • 1
  • Adrian Barquero-Sanchez
    • 2
  • Riad Masri
    • 2
  • Yan Sheng
    • 3
  1. 1.Department of Mathematics and StatisticsYoungstown State UniversityYoungstownUSA
  2. 2.Department of MathematicsTexas A&M UniversityCollege StationUSA
  3. 3.Mathematics and Computer ScienceEmory UniversityAtlantaUSA

Personalised recommendations