Archiv der Mathematik

, Volume 104, Issue 2, pp 133–143 | Cite as

Good reduction of algebraic groups and flag varieties

  • A. Javanpeykar
  • D. Loughran


In 1983, Faltings proved that there are only finitely many abelian varieties over a number field of fixed dimension and with good reduction outside a given set of places. In this paper, we consider the analogous problem for other algebraic groups and their homogeneous spaces, such as flag varieties.

Mathematics Subject Classification

14L15 (11E72, 14G25) 


Shafarevich conjecture Reductive groups Flag varieties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borel A., Serre J.-P.: Théorèmes de finitude en cohomologie galoisienne. Comment. Math. Helv. 39, 111–164 (1964)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    A. Borel, Linear algebraic groups, volume 126 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1991.Google Scholar
  3. 3.
    B. Conrad, Reductive group schemes, Available on author’s homepage.Google Scholar
  4. 4.
    B. Conrad, O. Gabber, and G. Prasad, Pseudo-reductive groups, volume 17 of New Mathematical Monographs, Cambridge University Press, Cambridge, 2010.Google Scholar
  5. 5.
    Demazure M.: Automorphismes et déformations des variétés de Borel. Invent. Math. 39, 179–186 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Demazure M., Gabriel P.: Groupes algébriques. Tome I. North-Holland Publishing Co., Amsterdam (1970)zbMATHGoogle Scholar
  7. 7.
    M. Demazure and A. Grothendieck, Schémas en groupes I, II, III (SGA 3), Lecture Notes in Math. 151, 152, 153. Springer-Verlag, New York, 1970.Google Scholar
  8. 8.
    Faltings G.: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math. 73, 349–366 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    P. Gille and L. Moret-Bailly, Actions algébriques de groupes arithmétiques, In Torsors, étale homotopy and applications to rational points, volume 405 of London Math. Soc. Lecture Note Ser. pages 231–249. Cambridge Univ. Press, 2013.Google Scholar
  10. 10.
    A. Javanpeykar and D. Loughran, Good reduction of complete intersections, Preprint.Google Scholar
  11. 11.
    Mazur B.: Arithmetic on curves. Bull. Amer. Math. Soc. 14, 207–259 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Mazur B.: On the passage from local to global in number theory. Bull. Amer. Math. Soc. (N.S.) 29, 14–50 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    J. S. Milne, Étale cohomology, volume 33 of Princeton Mathematical Series, Princeton University Press, Princeton, N.J., 1980.Google Scholar
  14. 14.
    V. Platonov and A. Rapinchuk, Algebraic groups and number theory, volume 139 of Pure and Applied Mathematics, Academic Press, Inc., Boston, MA, 1994.Google Scholar
  15. 15.
    Michel Raynaud, Faisceaux amples sur les schémas en groupes et les espaces homogènes, Lecture Notes in Mathematics, Vol. 119. Springer-Verlag, Berlin-New York, 1970.Google Scholar
  16. 16.
    I. R. Šafarevič, Algebraic number fields, In Proc. Internat. Congr. Mathematicians (Stockholm, 1962), pages 163–176. Inst. Mittag-Leffler, Djursholm, 1963.Google Scholar
  17. 17.
    A. J. Scholl, A finiteness theorem for del Pezzo surfaces over algebraic number fields. J. London Math. Soc. (2), 32 (1985), 31–40.Google Scholar
  18. 18.
    Seeley C.: 7-dimensional nilpotent Lie algebras. Trans. Amer. Math. Soc. 335, 479–496 (1993)zbMATHMathSciNetGoogle Scholar
  19. 19.
    H. Stichtenoth, Algebraic function fields and codes, volume 254 of Graduate Texts in Mathematics, Springer-Verlag, Berlin, second edition, 2009.Google Scholar
  20. 20.
    Waterhouse W. C., Weisfeiler B.: One-dimensional affine group schemes. J. Algebra 66, 550–568 (1980)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Institut für MathematikJohannes Gutenberg-Universität MainzMainzGermany
  2. 2.Institut für Algebra, Zahlentheorie und Diskrete MathematikLeibniz Universität HannoverHannoverGermany

Personalised recommendations