Archiv der Mathematik

, Volume 100, Issue 4, pp 361–367 | Cite as

Gradient blowup rate for a viscous Hamilton–Jacobi equation with degenerate diffusion

Article

Abstract

This paper is concerned with the gradient blowup rate for the one-dimensional p-Laplacian parabolic equation \({u_t=(|u_x|^{p-2} u_x)_x +|u_x|^q}\) with q > p > 2, for which the spatial derivative of solutions becomes unbounded in finite time while the solutions themselves remain bounded. We establish the blowup rate estimates of lower and upper bounds and show that in this case the blowup rate does not match the self-similar one.

Mathematics Subject Classification (2010)

35B35 35K58 35B20 

Keywords

Degenerate diffusion Gradient blowup rate Hamilton–Jacobi equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Attouchi A.: Well-posedness and gradient blow-up estimate near the boundary for a Hamilton–Jacobi equation with degenerate diffusion. Journal of Differential Equations 253, 2474–2492 (2012)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    A. Attouchi, Boundedness of global solutions of a p-Laplacian evolution equation with a nonlinear gradient term, 2012, arXiv:1209.5023 [math.AP].Google Scholar
  3. 3.
    Barles G., Laurençot Ph., Stinner C.: Convergence to steady states for radially symmetric solutions to a quasilinear degenerate diffusive Hamilton–Jacobi equation. Asymptotic Analysis 67, 229–250 (2010)MathSciNetMATHGoogle Scholar
  4. 4.
    Guo J.-S., Hu B.: Blowup rate estimates for the heat equation with a nonlinear gradient source term. Discrete Contin. Dyn. Sys. 20, 927–937 (2008)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Kardar M., Parisi G., Zhang Y.C.: Dynamic scailing of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)MATHCrossRefGoogle Scholar
  6. 6.
    Krug J., Spohn H.: Universality classes for deterministic surface growth. Phys. Rev. A. 38, 4271–4283 (1988)MathSciNetCrossRefGoogle Scholar
  7. 7.
    O.A. Ladyzenskaja, V.A. Solonnikov, and N.N. Ural’ceva, Linear and quasi-linear equations of parabolic type, Amer. Mathematical Society, 1968.Google Scholar
  8. 8.
    Laurençot Ph.: Convergence to steady states for a one-dimensional viscous Hamilton–Jacobi equation with Dirichlet boundary conditions. Pacific J. Math. 230, 347–364 (2007)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Laurençot Ph., Stinner C.: Convergence to separate variables solutions for a degenerate parabolic equation with gradient source. Journal of Dynamics and Differential Equations 24, 29–49 (2012)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Lieberman G.M.: Second Order Parabolic Differential Equations. World Scientific, Singapore (1996)MATHCrossRefGoogle Scholar
  11. 11.
    Stinner C.: Convergence to steady states in a viscous Hamilton–Jacobi equation with degenerate diffusion. Journal of Differential Equations 248, 209–228 (2010)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Zhang Z.C., Hu B.: Gradient blowup rate for a semilinear parabolic equation. Discrete Contin. Dyn. Sys. 26, 767–779 (2010)MATHGoogle Scholar
  13. 13.
    Zhang Z.C., Hu B.: Rate estimate of gradient blowup for a heat equation with exponential nonlinearity. Nonlinear Analysis 72, 4594–4601 (2010)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Zhang Z.C., Li Y.Y.: Gradient blowup solutions of a semilinear parabolic equation with exponential source. Comm. Pure Appl. Anal. 12, 269–280 (2013)CrossRefGoogle Scholar
  15. 15.
    Zhang Z.C., Li Z.J.: A note on gradient blowup rate of the inhomogeneous Hamilton–Jacobi equations. Acta Mathematica Scientia 33, 678–686 (2013)Google Scholar
  16. 16.
    Zhu L.P., Zhang Z.C.: Rate of approach to the steady state for a diffusion-convection equation on annular domains. E. J. Qualitative Theory Diff. Equations 39, 1–10 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsXi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations