Archiv der Mathematik

, Volume 100, Issue 4, pp 347–360 | Cite as

Essential norm of the product of differentiation and composition operators between Bloch-type spaces



In this paper, we give a new characterization for the boundedness of the product of differentiation and composition operators \({C_\varphi D^m}\) acting on Bloch-type spaces and obtain an estimate for its essential norm in terms of the sequence \({\{z^n\}^{\infty}_{n=1}}\), from which the sufficient and necessary condition of compactness of the operator \({C_\varphi D^m}\) follows immediately.

Mathematics Subject Classification (1991)

Primary 47B38 Secondary 26A24 30H30 47B33 


Essential norm Differentiation Composition operator Bloch-type space 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.C. Cowen and B.D. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, FL, 1995.Google Scholar
  2. 2.
    Fang Z.S., Zhou Z.H.: Essential norms of composition operators between Bloch type spaces in the polydisk. Archiv der Mathematik 99, 547–556 (2012)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Gorkin P., MacCluer B.D.: Essential norms of composition operators. Integral Equations Operator Theory 48, 27–40 (2004)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    MacCluer B.D., Zhao R.: Essential norms of weighted composition operators between Bloch-type spaces. Rocky Mountain J. Math. 33, 1437–1458 (2003)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Shapiro J.H.: Composition operators and Classical Function Theory. Springer-Verlag, New York (1993)MATHCrossRefGoogle Scholar
  6. 6.
    Wu Y., Wulan H.: Products of Differentiation and Composition Operators on the Bloch Space. Collect. Math. 63, 93–107 (2012)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Wulan H., Zheng D., Zhu K.: Compact composition operators on BMOA and the Bloch space. Proc. Amer. Math. Soc. 137, 3861–3868 (2009)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Zhao R.: Essential Norms of Composisition Operators between Bloch Type Spces. Proc. Amer. Math. Soc. 138, 2537–2546 (2010)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Zhu K.: Operator Theory in Function Spaces. Marcel Dekker, New York (1990)MATHGoogle Scholar
  10. 10.
    Zhou Z.H., Shi J.H.: Compactness of composition operators on the Bloch space in classical bounded symmetric domains. Michigan Math. J. 50, 381–405 (2002)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Zeng H.G., Zhou Z.H.: Essential norm estimate of a composition operator between Bloch-type spaces in the unit ball. Rocky Mountain J. Math. 42, 1049–1071 (2012)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Department of MathematicsTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations