Archiv der Mathematik

, Volume 99, Issue 5, pp 467–479 | Cite as

Generation and commutation properties of the Volterra operator

  • A. F. M. ter Elst
  • Manfred Sauter
  • Jaroslav Zemánek


Let V be the classical Volterra operator on L 2(0,1). Then the algebra generated (algebraically) by V and its adjoint is not only dense in the Banach space of all compact operators, but also in the Banach space of all Hilbert–Schmidt operators and as well in the space \({\mathcal{B}(L_2(0,1))}\) equipped with the weak operator topology. Moreover, the algebra generated by V 2 and its adjoint is dense in the Banach space of all trace class operators. We give an elementary proof that similar results are valid for polynomials in V without constant term. We also show that the commutant of any non-constant analytic function of V coincides with the commutant of V.

Mathematics Subject Classification (2010)

Primary 47B38 Secondary 46L99 47L75 47L05 


Volterra operator Self-commutator Commutant Trace classoperator Hilbert–Schmidt operator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bračič J. et al.: On positive commutators. Positivity 14, 431–439 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Conway J. B.: A course in functional analysis, Graduate Texts in Mathematics, volume 96, 2nd edition. Springer-Verlag, New York (1990)Google Scholar
  3. 3.
    J. B. Conway, The theory of subnormal operators, Mathematical Surveys and Monographs, volume 36, Amer. Math. Soc., Providence, RI, 1991.Google Scholar
  4. 4.
    Daniel V. W.: Convolution operators on Lebesgue spaces of the half-line. Trans. Amer. Math. Soc. 164, 479–488 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Daughtry J.: An invariant subspace theorem. Proc. Amer. Math. Soc. 49, 267–268 (1975)MathSciNetzbMATHGoogle Scholar
  6. 6.
    R. G. Douglas, Banach algebra techniques in operator theory, Pure and Applied Mathematics, volume 49, Academic Press, San Diego, CA, 1972.Google Scholar
  7. 7.
    Erdos J. A.: The commutant of the Volterra operator. Integral Equations Operator Theory 5, 127–130 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Frankfurt R., Rovnyak J.: Finite convolution operators. J. Math. Anal. Appl. 49, 347–374 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    R. Frankfurt and J. Rovnyak, Recent results and unsolved problems on finite convolution operators, in: Linear spaces and approximation (Proc. Conf., Math. Res. Inst., Oberwolfach, 1977), Lecture Notes in Biomathematics, volume 21, pp. 133–150, Springer, Berlin, 1978.Google Scholar
  10. 10.
    Kalisch G. K.: On similarity, reducing manifolds, and unitary equivalence of certain Volterra operators. Ann. of Math. 66, 481–494 (1957)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Kim H. W., Pearcy C., Shields A. L.: Rank-one commutators and hyperinvariant subspaces. Michigan Math. J. 22, 193–194 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Kubrusly C.S.: Elements of operator theory. Birkhäuser, Boston (2001)zbMATHGoogle Scholar
  13. 13.
    Lomonosov V., Rosenthal P.: The simplest proof of Burnside’s theorem on matrix algebras. Linear Algebra Appl. 383, 45–47 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Putnam C. R.: An inequality for the area of hyponormal spectra. Math. Z. 116, 323–330 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Radjavi H., Rosenthal P.: On transitive and reductive operator algebras. Math. Ann. 209, 43–56 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Radjavi H., Rosenthal P.: Invariant subspaces, 2nd edition. Dover Publications, Inc., Mineola, NY (2003)zbMATHGoogle Scholar
  17. 17.
    J. R. Ringrose, Compact non-self-adjoint operators, Van Nostrand Reinhold Mathematical Studies, volume 35, Van Nostrand Reinhold Company, London, 1971.Google Scholar
  18. 18.
    P. Rosenthal, Applications of Lomonosov’s lemma to non-self-adjoint operator algebras, Proc. Roy. Irish Acad. Sect. A 74 (1974), 271–281, Spectral Theory Symposium (Trinity College, Dublin, 1974).Google Scholar
  19. 19.
    Zhu K.: An introduction to operator algebras, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1993)Google Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  • A. F. M. ter Elst
    • 1
  • Manfred Sauter
    • 1
  • Jaroslav Zemánek
    • 2
  1. 1.Department of MathematicsUniversity of AucklandAucklandNew Zealand
  2. 2.Institute of MathematicsPolish Academy of SciencesWarsawPoland

Personalised recommendations