Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Schur multipliers and the Lazard correspondence

  • 265 Accesses

  • 12 Citations


Let G be a finite p-group of nilpotency class less than p−1, and let L be the Lie ring corresponding to G via the Lazard correspondence. We show that the Schur multipliers of G and L are isomorphic as abelian groups and that every Schur cover of G is in Lazard correspondence with a Schur cover of L. Further, we show that the epicenters of G and L are isomorphic as abelian groups. Thus the group G is capable if and only if the Lie ring L is capable.

This is a preview of subscription content, log in to check access.


  1. 1.

    Baer R.: Groups with Preassigned Central and Central Quotient Group. Trans. Amer. Math. Soc. 44, 387–412 (1938)

  2. 2.

    A. Bak et al. Homology of multiplicative Lie rings. J. Pure Appl. Algebra 208 (2007), 761–777.

  3. 3.

    Beyl F.R., Felgner U., Schmid P.: On groups occurring as center factor groups. J. Algebra 61, 161–177 (1979)

  4. 4.

    Bourbaki N.: Groupes et algèbres de Lie, Chapitre II. Hermann, Paris (1972)

  5. 5.

    Cicalò S., De Graaf W.A., Vaughan-Lee M.: An effective version of the Lazard correspondence. J. Algebra 352, 430–450 (2012)

  6. 6.

    Eick B., Nickel W.: Computing the Schur multiplicator and the nonabelian tensor square of a polycyclic group. J. Algebra 320, 927–944 (2008)

  7. 7.

    M. Horn and S. Zandi Computing Schur multipliers and epicenters of Lie rings. In preparation, 2012.

  8. 8.

    Lazard M.: Sur les groupes nilpotents et les anneaux de Lie. Ann. Sci. de l’ENS. 71, 101–190 (1954)

  9. 9.

    Robinson D.: A course in the theory of groups. 2nd edition. Springer, New York (1995)

  10. 10.

    Schur J.: Über die Darstellung der endlichen Gruppen durch gebrochen lineare Substitutionen. J. Reine Angew. Math. 127, 20–50 (1904)

  11. 11.

    C. A. Weibel Homological Algebra. Cambridge University Press, Cambridge 38, 1994.

  12. 12.

    Wiegold J.: Multiplicators and groups with finite central factor-groups. Math. Z. 89, 345–347 (1965)

Download references

Author information

Correspondence to Bettina Eick.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eick, B., Horn, M. & Zandi, S. Schur multipliers and the Lazard correspondence. Arch. Math. 99, 217–226 (2012).

Download citation

Mathematics Subject Classification (2000)

  • 17B30
  • 20D15
  • 20F18
  • 20F40


  • Schur multiplier
  • p-groups
  • Lie rings
  • Lazard correspondence