Archiv der Mathematik

, Volume 98, Issue 3, pp 253–263 | Cite as

Gagliardo–Nirenberg inequality for generalized Riesz potentials of functions in Musielak-Orlicz spaces

  • Yoshihiro Mizuta
  • Eiichi Nakai
  • Yoshihiro Sawano
  • Tetsu Shimomura
Article

Abstract

The aim of this paper is to give a Gagliardo–Nirenberg inequality for generalized Riesz potentials of functions in Musielak-Orlicz spaces over spaces of homogeneous type.

Mathematics Subject Classification (2010)

Primary 46E35 Secondary 46E30 

Keywords

Gagliardo–Nirenberg inequality Musielak-Orlicz space Generalized Riesz potentials Variable exponent Space of homogeneous type 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certains espaces homogenes, Lecture Notes in Math., 242, Springer-Verlag, Berlin and New York, 1971.Google Scholar
  2. 2.
    Gagliardo E.: Ulteriori propietà àdi alcune classi di funzioni on più variabli. Ric. Mat 8, 24–51 (1959)MathSciNetMATHGoogle Scholar
  3. 3.
    I. Genebashvili et al. Weight theory for integral transforms on spaces of homogeneous type, Pitman Monographs and Surveys in Pure and Applied Mathematics, 92. Longman, Harlow, 1998.Google Scholar
  4. 4.
    Gustavsson J., Peetre J.: Interpolation of Orlicz spaces. Studia Math 60, 33–59 (1977)MathSciNetMATHGoogle Scholar
  5. 5.
    P. Hajłasz and P. Koskela, Sobolev met Poincaré, Mem.Amer.Math.Soc. 145, 2000.Google Scholar
  6. 6.
    Kalamajska A., Pietruska-Paluba K.: Gagliardo-Nirenberg inequalities in logarithmic spaces, Colloq. Math. 106(1), 93–107 (2006)MathSciNetMATHGoogle Scholar
  7. 7.
    Kopaliani T., Chelidze G.: Gagliardo-Nirenberg type inequality for variable exponent Lebesgue spaces J. Math. Anal. Appl 356, 232–236 (2009)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    P. G. Lemarié, Algèbres d’operateurs et semi-groupes de Poisson sur un espace de nature homogène, Publ. Math. Orsay 84–3 (1984).Google Scholar
  9. 9.
    Macías R.A., Segovia C.: Lipschitz functions on spaces of homogeneous type. Adv. Math 33, 257–270 (1979)MATHCrossRefGoogle Scholar
  10. 10.
    Maeda F.-Y., Mizuta Y., Ohno T.: Approximate identities and Young type inequalities in variable Lebesgue-Orlicz spaces \({L^{p(\cdot)}(\log L)^{q(\cdot)}}\). Ann. Acad. Sci. Fenn. Math 35, 405–420 (2010)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Y. Mizuta et al. Littlewood-Paley theory for variable exponent Lebesgue spaces and Gagliardo-Nirenberg inequality for Riesz potentials, submitted.Google Scholar
  12. 12.
    J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer-Verlag, 1983.Google Scholar
  13. 13.
    Nakai E.: On generalized fractional integrals in the Orlicz spaces on spaces of homogeneous type. Sci. Math. Jpn 54, 473–487 (2001)MathSciNetMATHGoogle Scholar
  14. 14.
    Nakai E., Sumitomo H.: On generalized Riesz potentials and spaces of some smooth functions. Sci. Math. Jpn 54(3), 463–472 (2001)MathSciNetMATHGoogle Scholar
  15. 15.
    H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen Co., Ltd., Tokyo, 1950.Google Scholar
  16. 16.
    Nirenberg L.: On elliptic partial differential equations: Lecture II. Ann. Sc. Norm. Super. Pisa 13, 115–162 (1959)MathSciNetGoogle Scholar
  17. 17.
    Nirenberg L.: An extended interpolation inequality. Ann. Sc.Norm. Super. Pisa 20, 733–737 (1966)MathSciNetMATHGoogle Scholar
  18. 18.
    Stein E.M.: Functions of exponential type. Ann. of Math 65, 582–592 (1957)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Stein E.M.: Singular integrals and differentiability properties of functions. Princeton Univ. Press, Princeton (1970)MATHGoogle Scholar
  20. 20.
    Zang A., Fu Y.: Interpolation inequalities for derivatives in variable exponent Lebesgue-Sobolev spaces. Nonlinear Anal 69, 3629–3636 (2008)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Yoshihiro Mizuta
    • 1
  • Eiichi Nakai
    • 2
  • Yoshihiro Sawano
    • 3
  • Tetsu Shimomura
    • 4
  1. 1.Department of Mechanical Systems EngineeringHiroshima Institute of TechnologyHiroshimaJapan
  2. 2.Department of MathematicsIbaraki UniversityMitoJapan
  3. 3.Department of MathematicsKyoto UniversityKyotoJapan
  4. 4.Department of Mathematics, Graduate School of EducationHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations