Advertisement

Archiv der Mathematik

, 96:565 | Cite as

The p-Daugavet property for function spaces

  • Enrique A. Sánchez Pérez
  • Dirk WernerEmail author
Article
  • 84 Downloads

Abstract

A natural extension of the Daugavet property for p-convex Banach function spaces and related classes is analysed. As an application, we extend the arguments given in the setting of the Daugavet property to show that no reflexive space falls into this class.

Mathematics Subject Classification (2010)

Primary 46B04 Secondary 46B25 

Keywords

Daugavet property Lp-space 

References

  1. 1.
    Abramovich Yu.A., Aliprantis C.D., Burkinshaw O.: The Daugavet equation in uniformly convex Banach spaces. J. Funct. Anal. 97, 215–230 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Yu. A. Abramovich and C. D. Aliprantis, An Invitation to Operator Theory, Graduate Studies in Mathematics 50, Amer. Math. Soc., Providence RI, 2002.Google Scholar
  3. 3.
    Bilik D. et al.: Narrow operators and the Daugavet property for ultraproducts. Positivity 9, 45–62 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Boyko K., Kadets V.M.: Daugavet equation in L 1 as a limiting case of the Benyamini-Lin L p theorem. Kharkov National University Vestnik 645, 22–29 (2004)zbMATHGoogle Scholar
  5. 5.
    Becerra Guerrero J., Rodríguez-Palacios A.: Banach spaces with the Daugavet property, and the centralizer. J. Funct. Anal. 254, 2294–2302 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Kadets V.M.: Some remarks concerning the Daugavet equation. Quaestiones Math. 19, 225–235 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Kadets V.M. et al.: Banach spaces with the Daugavet property. Trans. Amer. Math. Soc. 352, 855–873 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces II, Springer-Verlag, Berlin-Heidelberg-New York, 1979.Google Scholar
  9. 9.
    Martń M.: The Daugavetian index of a Banach space. Taiwan. J. Math. 7, 631–640 (2003)Google Scholar
  10. 10.
    Martín M., Oikhberg T.: An alternative Daugavet property. J. Math Anal. Appl. 294, 158–180 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Oikhberg T.: Spaces of operators, the ψ-Daugavet property, and numerical indices. Positivity 9, 607–623 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    S., Okada, W. J. Ricker, E.A. Sánchez Pérez, Optimal Domain and Integral Extension of Operators acting in Function Spaces., Oper. Theory Adv. Appl. 180, Birkhäuser, Basel, 2008.Google Scholar
  13. 13.
    Sánchez Pérez E.A., Werner D.: The geometry of L p-spaces over atomless measure spaces and the Daugavet property. Banach J. Math. Anal. 5, 167–180 (2011)MathSciNetzbMATHGoogle Scholar
  14. 14.
    H. H. Schaefer, Banach Lattices and Positive Operators, Springer-Verlag, Berlin-Heidelberg-New York, 1974.Google Scholar
  15. 15.
    Werner D.: Recent progress on the Daugavet property, Irish Math. Soc. Bulletin 46, 77–97 (2001)Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Instituto Universitario de Matemática Pura y AplicadaUniversidad Politécnica de ValenciaValenciaSpain
  2. 2.Department of MathematicsFreie Universität BerlinBerlinGermany

Personalised recommendations