Archiv der Mathematik

, Volume 96, Issue 2, pp 187–199 | Cite as

Krahn’s proof of the Rayleigh conjecture revisited



The paper is a discussion of Krahn’s proof of the Rayleigh conjecture that amongst all membranes of the same area and the same physical properties, the circular one has the lowest ground frequency. We show how his approach coincides with the modern techniques of geometric measure theory using the co-area formula. We furthermore discuss some issues and generalisations of his proof.

Mathematics Subject Classification (2010)

35P15 01A60 


Rayleigh conjecture Edgar Krahn Faber-Krahn inequality Isoperimetric inequalities Eigenvalue estimates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ambrosio L., Fusco N., Pallara D.: Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (2000)Google Scholar
  2. 2.
    W. Arendt and S. Monniaux, Domain Perturbation for the first Eigenvalue of the Dirichlet Schrödinger Operator, in: M. Demuth and B. Schulze (eds.), Partial Differential Equations and Mathematical Physics, Operator Theory: Advances and Applications, 78, pp. 9–19, Birkhäuser, Basel, Holzau, 1994, 1995.Google Scholar
  3. 3.
    M. S. Ashbaugh and R. D. Benguria, Isoperimetric inequalities for eigenvalues of the Laplacian, in: Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday, Proc. Sympos. Pure Math. 76, pp. 105–139, Amer. Math. Soc., Providence, RI, 2007.Google Scholar
  4. 4.
    C. Bandle, Isoperimetric inequalities and applications, Monographs and Studies in Mathematics 7, Pitman, Boston, Mass., 1980.Google Scholar
  5. 5.
    Bossel M.-H.: Membranes élastiquement liées: extension du théorème de Rayleigh-Faber-Krahn et de l’inégalité de Cheeger. C. R. Acad. Sci. Paris Sér. I Math. 302, 47–50 (1986)MathSciNetMATHGoogle Scholar
  6. 6.
    Brothers J.E., Ziemer W.P.: Minimal rearrangements of Sobolev functions. J. Reine Angew. Math. 384, 153–179 (1988)MathSciNetMATHGoogle Scholar
  7. 7.
    D. Bucur and G. Buttazzo, Variational methods in shape optimization problems, Progress in Nonlinear Differential Equations and their Applications 65, Birkhäuser Boston Inc., Boston, MA, 2005.Google Scholar
  8. 8.
    Bucur D., Daners D.: An alternative approach to the Faber-Krahn inequality for Robin problems. Calc. Var. Partial Differential Equations 37, 75–86 (2010)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Bucur D., Giacomini A.: A variational approach of the isoperimetric inequality for the Robin eigenvalue problem. Arch. Ration. Mech. Anal. 198, 927–961 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    I. Chavel, Isoperimetric inequalities, Cambridge Tracts in Mathematics 145, Cambridge University Press, Cambridge, 2001.Google Scholar
  11. 11.
    Courant R.: Beweis des Satzes, daß von allen homogenen Membranen gegebenen Umfanges und gegebener Spannung die kreisförmige den tiefsten Grundton besitzt. Math. Z. 1, 321–328 (1918)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Q. Dai and Y. Fu, Faber-Krahn inequality for Robin problem involving p- Laplacian, Preprint (2008), arXiv:0912.0393.Google Scholar
  13. 13.
    Daners D.: A Faber-Krahn inequality for Robin problems in any space dimension. Math. Ann. 335, 767–785 (2006)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Daners D., Kawohl B.: An isoperimetric inequality related to a Bernoulli problem. Calc. Var. Partial Differential Equations 39, 547–555 (2010)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Daners D., Kennedy J.: Uniqueness in the Faber-Krahn Inequality for Robin Problems. SIAM J. Math. Anal. 39, 1191–1207 (2007)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.Google Scholar
  17. 17.
    G. Faber, Beweis dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt, Sitzungsbericht der bayerischen Akademie der Wissenschaften, pp. 169–172 (1923).Google Scholar
  18. 18.
    Federer H.: Curvature measures. Trans. Amer. Math. Soc. 93, 418–491 (1959)MathSciNetMATHGoogle Scholar
  19. 19.
    H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften 153, Springer, New York, 1969.Google Scholar
  20. 20.
    N. Fusco, Geometrical aspects of symmetrization, in: Calculus of variations and nonlinear partial differential equations, Lecture Notes in Math. 1927, pp. 155–181, Springer-Verlag, Berlin, 2008.Google Scholar
  21. 21.
    Henrot A.: Extremum problems for eigenvalues of elliptic operators, Frontiers in Mathematics. Birkhäuser Verlag, Basel (2006)Google Scholar
  22. 22.
    B. Kawohl, Rearrangements and convexity of level sets in PDE, Lecture Notes in Mathematics 1150, Springer-Verlag, Berlin, 1985.Google Scholar
  23. 23.
    Kennedy J.: An isoperimetric inequality for the second eigenvalue of the Laplacian with Robin boundary conditions. Proc. Amer. Math. Soc. 137, 627–633 (2009)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    S. Kesavan, Symmetrization & applications, Series in Analysis 3, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006.Google Scholar
  25. 25.
    Krahn E.: Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises. Math. Ann. 94, 97–100 (1925)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    E. Krahn, Über Minimaleigenschaften der Kugel in drei und mehr Dimensionen, Acta Comm. Univ. Tartu (Dorpat) A 9, 1–44 (1926), English translation in [28, pp 139–175].Google Scholar
  27. 27.
    G. Leoni, A first course in Sobolev spaces, Graduate Studies in Mathematics 105, American Mathematical Society, Providence, RI, 2009.Google Scholar
  28. 28.
    Ü. Lumiste and J. Peetre (eds.), Edgar Krahn, 1894–1961, IOS Press, Amsterdam, 1994, a centenary volume.Google Scholar
  29. 29.
    Maz’ja V.G.: Sobolev spaces, Springer Series in Soviet Mathematics. Springer-Verlag, Berlin (1985)Google Scholar
  30. 30.
    Osserman R.: The isoperimetric inequality. Bull. Amer. Math. Soc. 84, 1182–1238 (1978)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Payne L.E.: Isoperimetric inequalities and their applications. SIAM Rev. 9, 453–488 (1967)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Pólya G.: Torsional rigidity, principal frequency, electrostatic capacity and symmetrization. Quart. Appl. Math. 6, 267–277 (1948)MathSciNetMATHGoogle Scholar
  33. 33.
    G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, 27, Princeton University Press, Princeton, N. J., 1951.Google Scholar
  34. 34.
    Polya G., Weinstein A.: On the torsional rigidity of multiply connected cross-sections. Ann. of Math. (2) 52, 154–163 (1950)MathSciNetCrossRefGoogle Scholar
  35. 35.
    J. W. Rayleigh and B. Strutt, The Theory of Sound, Dover Publications, New York, N. Y., 1945, 2nd ed.Google Scholar
  36. 36.
    Rayleigh L.: The Theory of Sound, 1st ed. Macmillan, London (1877)Google Scholar
  37. 37.
    Rudin W.: Real and Complex Analysis, 2nd ed. McGraw-Hill Inc., New York (1974)MATHGoogle Scholar
  38. 38.
    Schmidt E.: Über das isoperimetrische Problem im Raum von n Dimensionen. Math. Z. 44, 689–788 (1939)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Sperner E. Jr.: Symmetrisierung für Funktionen mehrerer reeller Variablen. Manuscripta Math. 11, 159–170 (1974)MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Talenti G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. (4) 110, 353–372 (1976)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Tonelli L.: Sur un problème de Lord Rayleigh. Monatsh. Math. Phys. 37, 253–280 (1930)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsUniversity of SydneySydneyAustralia

Personalised recommendations