Archiv der Mathematik

, Volume 95, Issue 6, pp 539–548 | Cite as

A short proof of Levinson’s theorem



We give a short proof of Levinson’s result that over 1/3 of the zeros of the Riemann zeta function are on the critical line.

Mathematics Subject Classification (2010)

Primary 11M26 


Riemann zeta function Critical line Zeros Levinson Mollifier Moment Mean value 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Conrey J.B.: More than two fifths of the zeros of the Riemann zeta function are on the critical line. J. Reine Angew. Math. 399, 1–26 (1989)MATHMathSciNetGoogle Scholar
  2. 2.
    Conrey J.B.: Zeros of derivatives of Riemann’s ξ-function on the critical line. J. Number Theory 16, 49–74 (1983)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    J. B. Conrey and A. Ghosh, A simpler proof of Levinson’s theorem, Math. Proc. Cambridge Philos. Soc. 97 (1985), 385–395. Proc. Lond. Math. Soc. (3) 94 (2007), 594–646.Google Scholar
  4. 4.
    Ivić A.: The Riemann zeta-function, The theory of the Riemann zeta-function with applications. John Wiley & Sons. Inc., New York (1985)MATHGoogle Scholar
  5. 5.
    H. Iwaniec and E. Kowalski, Analytic Number Theory, American Mathematical Society Colloquium Publications, 53. American Mathematical Society, Providence, RI, 2004.Google Scholar
  6. 6.
    A. Karatsuba and S. Voronin, The Riemann zeta-function, Translated from the Russian by Neal Koblitz, de Gruyter Expositions in Mathematics, 5, Walter de Gruyter & Co., Berlin, 1992.Google Scholar
  7. 7.
    Levinson N.: More than one third of the zeros of Riemann’s zeta function are on σ = 1/2. Adv. Math. 13, 383–436 (1974)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    A. Selberg, On the zeros of Riemann’s zeta-function, Skr. Norske Vid. Akad. Oslo I. (1942), 1–59.Google Scholar
  9. 9.
    E. C. Titchmarsh, The Theory of the Riemann Zeta-function, 2nd ed., Edited and with a preface by D. R. Heath-Brown, The Clarendon Press, Oxford University Press, New York, 1986.Google Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Department of MathematicsTexas A&M UniversityCollege StationUSA
  2. 2.School of MathematicsInstitute for Advanced StudyPrincetonUSA

Personalised recommendations