Archiv der Mathematik

, Volume 95, Issue 4, pp 333–342 | Cite as

The affine preservers of non-singular matrices



When \({\mathbb{K}}\) is an arbitrary field, we study the affine automorphisms of \({{\rm M}_n(\mathbb{K})}\) that stabilize \({{\rm GL}_n(\mathbb{K})}\). Using a theorem of Dieudonné on maximal affine subspaces of singular matrices, this is easily reduced to the known case of linear preservers when n > 2 or # \({\mathbb{K} > 2}\). We include a short new proof of the more general Flanders theorem for affine subspaces of \({{\rm M}_{p,q}(\mathbb{K})}\) with bounded rank. We also find that the group of affine transformations of \({{\rm M}_2(\mathbb{F}_2)}\) that stabilize \({{\rm GL}_2(\mathbb{F}_2)}\) does not consist solely of linear maps. Using the theory of quadratic forms over \({\mathbb{F}_2}\), we construct explicit isomorphisms between it, the symplectic group \({{\rm Sp}_4(\mathbb{F}_2)}\) and the symmetric group \({\mathfrak{S}_6}\).

Mathematics Subject Classification (2010)

Primary 15A86 Secondary 15A63 11E57 


Linear preservers General linear group Singular subspaces Affine group Rank Linear subspaces Symplectic group Arf invariant Quadratic forms Symmetric group 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Artin, Geometric Algebra, Interscience Tracts in Pure and Applied Mathematic, 3, Wiley Classics Library, Interscience Publishers, New-York, 1988.Google Scholar
  2. 2.
    Dieudonné J.: Sur une généralisation du groupe orthogonal à quatre variables. Arch. Math. 1, 282–287 (1949)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Flanders H.: On spaces of linear transformations with bounded rank. J. Lond. Math. Soc. 37, 10–16 (1962)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    G. Frobenius Über die Darstellung der endlichen Gruppen durchlineare Substitutionen, Sitzungsber. Preuss. Akad. Wiss. Berlin (1897), 994–1015.Google Scholar
  5. 5.
    W. Greub, Linear algebra, 3rd edition, Grundlehren der mathematischen Wissenschaften, 97, Springer-Verlag, 1967.Google Scholar
  6. 6.
    Meshulam R.: On the maximal rank in a subspace of matrices. Q. J. Math. Oxford II, 36, 225–229 (1985)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    W. Scharlau, Quadratic and Hermitian Forms, Grundlehren der mathemati- schen Wissenschaften, 270, Springer-Verlag, 1985.Google Scholar
  8. 8.
    de Seguins Pazzis C.: The singular linear preservers of non-singular matrices. Linear Algebra Appl. 433, 483–490 (2010)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Lycée Privé Sainte-GenevièveVersailles CedexFrance

Personalised recommendations