Archiv der Mathematik

, Volume 95, Issue 3, pp 269–282 | Cite as

An infinite family of Gromoll–Meyer spheres

  • Carlos Durán
  • Thomas Püttmann
  • A. Rigas


We construct a new infinite family of models of exotic 7-spheres. These models are direct generalizations of the Gromoll–Meyer sphere. From their symmetries, geodesics and submanifolds half of them are closer to the standard 7-sphere than any other known model for an exotic 7-sphere.

Mathematics Subject Classification (2000)

Primary 53C22 Secondary 57R91 


Exotic spheres Geodesics Equivariant homeomorphisms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. L. Besse, Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik und ihrer Grenzgebiete 93, Springer-Verlag, Berlin-New York, 1978.Google Scholar
  2. 2.
    Brieskorn E.: Beispiele zur Differentialgeometrie von Singularitäten. Invent. Math. 2, 1–14 (1966)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Davis M.W.: Some group actions on homotopy spheres of dimension seven and fifteen. Amer. J. Math. 104, 59–90 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Durán C.E.: Pointed Wiedersehen metrics on exotic spheres and diffeomorphisms of \({\mathbb {S} ^6}\) . Geom. Dedicata 88, 199–210 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Durán C.E., Mendoza A., Rigas A.: Blakers-Massey elements and exotic diffeomorphisms of S 6 and S 14 via geodesics. Trans. Amer. Math. Soc. 356, 5025–5043 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Durán C.E., Püttmann T.: A minimal Brieskorn 5-sphere in the Gromoll-Meyer sphere and its applications. Michigan Math. J. 56, 419–451 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Eells J., Kuiper N.H.: An invariant for certain smooth manifolds. Ann. Mat. Pura Appl. 60, 93–110 (1962)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Gromoll D., Meyer W.: An exotic sphere with nonnegative curvature. Ann. Math. 100, 401–406 (1974)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Grove K., Ziller W.: Curvature and symmetry of Milnor spheres. Ann. of Math. 152, 331–367 (2003)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Hirsch M., Milnor J.: Some curious involutions of spheres. Bull. Amer. Math. Soc. 70, 372–377 (1964)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    F. Hirzebruch and K. H. Mayer, O(n)-Mannigfaltigkeiten, exotische Sphären und Singularitäten, Lecture Notes in Mathematics 57, Springer-Verlag, Berlin, 1968.Google Scholar
  12. 12.
    Hu S.T.: Homotopy theory, Pure and Applied Mathematics VIII. Academic Press, New York (1959)Google Scholar
  13. 13.
    Kapovitch V., Ziller W.: Biquotients with singly generated rational cohomology. Geom. Dedicata 104, 149–160 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kervaire M.A., Milnor J.W.: Groups of homotopy spheres I. Ann. of Math. 77, 504–537 (1963)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Milnor J.W.: On manifolds homeomorphic to the 7-sphere. Ann. of Math. 64, 399–405 (1956)CrossRefMathSciNetGoogle Scholar
  16. 16.
    J. W. Milnor, On the 3-dimensional Brieskorn manifolds M(p,q,r). Knots, Groups and 3-Manifolds (L. P. Neuwirth, ed.), Annals of Mathematical Studies 84, 175–225. Princeton University Press, Princeton, NJ, 1975.Google Scholar
  17. 17.
    A. Rigas S 3-bundles and exotic actions, Bull. Soc. Math. France 112 (1984), 69–92; correction by T. E. Barros, Bull. Soc. Math. France 129 (2001), 543–545.Google Scholar
  18. 18.
    Straume E.: Compact differentiable transformation groups on exotic spheres. Math. Ann. 299, 355–389 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Totaro B.: Cheeger manifolds and the classification of biquotients. J. Differential Geom. 61, 397–451 (2002)zbMATHMathSciNetGoogle Scholar
  20. 20.
    C. T. C. Wall, Surgery on compact manifolds, Mathematical surveys and monographs 69, AMS, Providence, 1999.Google Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.IMECC-UNICAMP, Praça Sergio Buarque de HolandaCampinasBrazil
  2. 2.Departamento de Matemática - UFPRSetor de Ciências Exatas - Centro PolitécnicoCuritibaBrasil
  3. 3.Fakultät für MathematikRuhr-Universität BochumBochumGermany

Personalised recommendations