An infinite family of Gromoll–Meyer spheres
Article
First Online:
- 113 Downloads
- 4 Citations
Abstract
We construct a new infinite family of models of exotic 7-spheres. These models are direct generalizations of the Gromoll–Meyer sphere. From their symmetries, geodesics and submanifolds half of them are closer to the standard 7-sphere than any other known model for an exotic 7-sphere.
Mathematics Subject Classification (2000)
Primary 53C22 Secondary 57R91Keywords
Exotic spheres Geodesics Equivariant homeomorphismsPreview
Unable to display preview. Download preview PDF.
References
- 1.A. L. Besse, Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik und ihrer Grenzgebiete 93, Springer-Verlag, Berlin-New York, 1978.Google Scholar
- 2.Brieskorn E.: Beispiele zur Differentialgeometrie von Singularitäten. Invent. Math. 2, 1–14 (1966)zbMATHCrossRefMathSciNetGoogle Scholar
- 3.Davis M.W.: Some group actions on homotopy spheres of dimension seven and fifteen. Amer. J. Math. 104, 59–90 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
- 4.Durán C.E.: Pointed Wiedersehen metrics on exotic spheres and diffeomorphisms of \({\mathbb {S} ^6}\) . Geom. Dedicata 88, 199–210 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
- 5.Durán C.E., Mendoza A., Rigas A.: Blakers-Massey elements and exotic diffeomorphisms of S 6 and S 14 via geodesics. Trans. Amer. Math. Soc. 356, 5025–5043 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
- 6.Durán C.E., Püttmann T.: A minimal Brieskorn 5-sphere in the Gromoll-Meyer sphere and its applications. Michigan Math. J. 56, 419–451 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
- 7.Eells J., Kuiper N.H.: An invariant for certain smooth manifolds. Ann. Mat. Pura Appl. 60, 93–110 (1962)CrossRefMathSciNetGoogle Scholar
- 8.Gromoll D., Meyer W.: An exotic sphere with nonnegative curvature. Ann. Math. 100, 401–406 (1974)CrossRefMathSciNetGoogle Scholar
- 9.Grove K., Ziller W.: Curvature and symmetry of Milnor spheres. Ann. of Math. 152, 331–367 (2003)CrossRefMathSciNetGoogle Scholar
- 10.Hirsch M., Milnor J.: Some curious involutions of spheres. Bull. Amer. Math. Soc. 70, 372–377 (1964)zbMATHCrossRefMathSciNetGoogle Scholar
- 11.F. Hirzebruch and K. H. Mayer, O(n)-Mannigfaltigkeiten, exotische Sphären und Singularitäten, Lecture Notes in Mathematics 57, Springer-Verlag, Berlin, 1968.Google Scholar
- 12.Hu S.T.: Homotopy theory, Pure and Applied Mathematics VIII. Academic Press, New York (1959)Google Scholar
- 13.Kapovitch V., Ziller W.: Biquotients with singly generated rational cohomology. Geom. Dedicata 104, 149–160 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
- 14.Kervaire M.A., Milnor J.W.: Groups of homotopy spheres I. Ann. of Math. 77, 504–537 (1963)CrossRefMathSciNetGoogle Scholar
- 15.Milnor J.W.: On manifolds homeomorphic to the 7-sphere. Ann. of Math. 64, 399–405 (1956)CrossRefMathSciNetGoogle Scholar
- 16.J. W. Milnor, On the 3-dimensional Brieskorn manifolds M(p,q,r). Knots, Groups and 3-Manifolds (L. P. Neuwirth, ed.), Annals of Mathematical Studies 84, 175–225. Princeton University Press, Princeton, NJ, 1975.Google Scholar
- 17.A. Rigas S 3-bundles and exotic actions, Bull. Soc. Math. France 112 (1984), 69–92; correction by T. E. Barros, Bull. Soc. Math. France 129 (2001), 543–545.Google Scholar
- 18.Straume E.: Compact differentiable transformation groups on exotic spheres. Math. Ann. 299, 355–389 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
- 19.Totaro B.: Cheeger manifolds and the classification of biquotients. J. Differential Geom. 61, 397–451 (2002)zbMATHMathSciNetGoogle Scholar
- 20.C. T. C. Wall, Surgery on compact manifolds, Mathematical surveys and monographs 69, AMS, Providence, 1999.Google Scholar
Copyright information
© Springer Basel AG 2010