Archiv der Mathematik

, Volume 95, Issue 2, pp 191–199 | Cite as

Modifications of the Ricci tensor and applications

  • Murat LimoncuEmail author


By using two modified Ricci tensors, we prove some theorems which correspond to Myers’s diameter estimate theorem and Bochner’s vanishing theorem.


Myers-type theorem Index form Bochner technique Vanishing theorem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bochner S.: Vector fields and Ricci curvature. Bull. Amer. Math. Soc. 52, 776–797 (1946)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Fernández-López M., García-Río E.: A remark on compact Ricci solitons. Math. Ann. 340, 893–896 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    F. Fang, X. D. Li, and Z. Zhang, Two Generalizations of Cheeger-Gromoll Splitting theorem via Bakry-Emery Ricci Curvature, arXiv:0707.0526v2.Google Scholar
  4. 4.
    Lee J.M.: Riemannian manifolds. Springer-Verlag, New York (1997)zbMATHGoogle Scholar
  5. 5.
    Lichnerowicz A.: Variétés Riemanniennes à tenseur C non négatif. C. R. Acad. Sc. Paris Serie A 271, A650–A653 (1970)MathSciNetGoogle Scholar
  6. 6.
    A. Lichnerowicz, Variétés Kählériennes à première classe de Chern non negative et variétés Riemanniennes à courbure de Ricci généralisée non negative, J. Differential Geom. 6, 47–94 (1971/72).Google Scholar
  7. 7.
    Limoncu M.: The Bochner Technique and Modification of the Ricci Tensor. Ann. Glob. Anal. Geom. 36, 285–291 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Lott J.: Some geometric properties of the Bakry-Emery-Ricci tensor. Comment. Math. Helv. 78, 865–883 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Myers S.B.: Riemannian manifolds with positive mean curvature. Duke Math. J. 8, 401–404 (1941)CrossRefMathSciNetGoogle Scholar
  10. 10.
    O’Neill B.: Semi-Riemannian Geometry. Academic Press, New York (1983)zbMATHGoogle Scholar
  11. 11.
    Petersen P.: Riemannian Geometry. Springer-Verlag, New York (1998)zbMATHGoogle Scholar
  12. 12.
    Petersen P.: Aspects of Global Riemannian Geometry. Bull. Amer. Math. Soc. 36, 297–344 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Qian Z.: Estimates for Weighted Volumes and Applications. Quart. J. Math. Oxford 48, 235–242 (1997)zbMATHCrossRefGoogle Scholar
  14. 14.
    Wei G., Wylie W.: Comparison Geometry for the Bakry-Emery Ricci tensor. J. Diff. Geom. 83, 337–405 (2009)MathSciNetGoogle Scholar
  15. 15.
    Wylie W.: Complete shrinking Ricci solitons have finite fundamental group. Proc. Amer. Math. Soc. 136, 1803–1806 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Yano K.: On harmonic and killing vector fields. Ann. Math. 55, 38–45 (1952)CrossRefGoogle Scholar
  17. 17.
    Zhang Z.: On the finiteness of the fundamental group of a compact shrinking Ricci soliton. Colloq. Math. 107, 297–299 (2007)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Department of MathematicsAnadolu UniversityEskişehirTurkey

Personalised recommendations