Archiv der Mathematik

, Volume 94, Issue 6, pp 501–510 | Cite as

Another new approach to the small Ree groups

Article

Abstract

A new elementary construction of the small Ree groups is described.

Mathematics Subject Classification (2000)

20D06 

Keywords

Groups of Lie type Simple groups Ree groups 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bombieri E., Odlyzko A., Hunt D.: Thompson’s problem (σ 2 = 3). Invent. Math. 58, 77–100 (1980)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Howlett R.B., Rylands L.J., Taylor D.E.: Matrix generators for exceptional groups of Lie type. J. Symb. Comput. 31, 429–445 (2001)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ree R.: A family of simple groups associated with the simple Lie algebra of type (G 2). Amer. J. Math. 83, 432–462 (1961)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Ree R.: A family of simple groups associated with the simple Lie algebra of type (F 4). Bull. Amer. Math. Soc. 67, 115–116 (1961)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    J. Tits, Les groupes simples de Suzuki et Ree, Séminaire Bourbaki 6 (1960/1), exposé 210.Google Scholar
  6. 6.
    H. van Maldeghem, Generalized polygons, Monographs in Mathematics 93 (Birkhäuser, 1998).Google Scholar
  7. 7.
    R. A. Wilson, An elementary construction of the Ree groups of type 2 G 2, to appear in Proc. Edinburgh Math. Soc. (2010).Google Scholar
  8. 8.
    Wilson R.A.: A simple construction of the Ree groups of type 2 F 4. J. Algebra 323, 1468–1481 (2010)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    R. A. Wilson, A new approach to the Suzuki groups, to appear in Math. Proc. Cambridge Philos. Soc.Google Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.School of Mathematical SciencesQueen Mary, University of LondonLondonUK

Personalised recommendations