Archiv der Mathematik

, Volume 94, Issue 5, pp 443–457 | Cite as

Amplification arguments for large sieve inequalities



We give a new proof of the arithmetic large sieve inequality based on an amplification argument, and use a similar method to prove a new sieve inequality for classical holomorphic cusp forms. A sample application of the latter is also given.

Mathematics Subject Classification (2000)

Primary 11N35 11F11 


Large sieve inequality Modular form Amplification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Bruggeman, Fourier coefficients of cusp forms, Invent. math. 45 (1978), 1–18.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    B. Conrey, W. Duke, and D. Farmer, The distribution of the eigenvalues of Hecke operators, Acta Arith. 78 (1997), 405–409.MATHMathSciNetGoogle Scholar
  3. 3.
    J.-M. Deshouillers and H. Iwaniec, Kloosterman sums and Fourier coefficients of cusp forms, Invent. math. 70 (1982), 220–288.CrossRefMathSciNetGoogle Scholar
  4. 4.
    W. Duke and E. Kowalski, A problem of Linnik for elliptic curves and mean-value estimates for automorphic representations, with an Appendix by D. Ramakrishnan, Invent math. 139 (2000), 1–39.Google Scholar
  5. 5.
    H. Halberstam and H. E. Richert, Sieve methods, London Math. Soc. Monograph, Academic Press (London), 1974Google Scholar
  6. 6.
    H. Iwaniec, W. Kohnen, and J. Sengupta, The first negative Hecke eigenvalue, International J. Number Theory 3 (2007), 355–363.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    H. Iwaniec and E. Kowalski, Analytic number theory, AMS Colloquium Publ. 53, 2004.Google Scholar
  8. 8.
    E. Kowalski, The large sieve and its applications: arithmetic geometry, random walks and discrete groups, Cambridge Tracts in Math. 175, 2008.Google Scholar
  9. 9.
    Y. K. Lau and J. Wu, A large sieve inequality of Elliott–Montgomery–Vaughan type for automorphic forms and two applications, International Mathematics Research Notices, Vol. 2008 , doi: 10.1093/imrn/rmn162.
  10. 10.
    H.-L. Montgomery, Topics in multiplicative number theory, Lecture Notes Math. 227, Springer-Verlag 1971.Google Scholar
  11. 11.
    H.-L. Montgomery, The analytic principle of the large sieve, Bull. A.M.S. 84 (1978), 547–567.MATHCrossRefGoogle Scholar
  12. 12.
    E. Royer, Facteurs Q-simples de J 0(N) de grande dimension et de grand rang, Bull. Soc. Math. France 128 (2000), 219–248.MATHMathSciNetGoogle Scholar
  13. 13.
    P. Sarnak, Statistical properties of eigenvalues of the Hecke operators, in: Analytic Number Theory and Diophantine Problems (Stillwater, OK, 1984), Progr. Math. 70, Birkhäuser, 1987, 321–331.Google Scholar
  14. 14.
    J.-P. Serre, Répartition asymptotique des valeurs propres de l’opérateur de Hecke T p, J. Amer. Math. Soc. 10 (1997), 75–102.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    F. Shahidi, Symmetric power L-functions for GL(2), in: Elliptic curves and related topics, E. Kishilevsky and M. Ram Murty (eds.), CRM Proc. and Lecture Notes 4, 1994, 159–182.Google Scholar

Copyright information

© Birkhäuser / Springer Basel AG 2010

Authors and Affiliations

  1. 1.ETH Zürich, D-MATHZürichSwitzerland

Personalised recommendations