Advertisement

Archiv der Mathematik

, Volume 94, Issue 6, pp 547–553 | Cite as

Phillips’ lemma for L-embedded Banach spaces

  • Hermann PfitznerEmail author
Article

Abstract

In this note the following version of Phillips’ lemma is proved. The L-projection of an L-embedded space—that is of a Banach space which is complemented in its bidual such that the norm between the two complementary subspaces is additive—is weak*-weakly sequentially continuous.

Mathematics Subject Classification (2010)

46B20 

Keywords

Phillips’ lemma L-embedded Banach space L-projection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akemann C. A.: The dual space of an operator algebra. Trans. Amer. Math. Soc. 126, 286–302 (1967)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Delbaen F.: Weakly compact operators on the disc algebra. J. Algebra 45, 284–294 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Diestel J.: Sequences and Series in Banach Spaces. Springer-Verlag, Berlin-Heidelberg-New York (1984)Google Scholar
  4. 4.
    Godefroy G., Saab P.: Weakly unconditionally convergent series in M-ideals. Math. Scand. 64, 307–318 (1989)zbMATHMathSciNetGoogle Scholar
  5. 5.
    P. Harmand, D. Werner, and W. Werner. M-ideals in Banach Spaces and Banach Algebras, Lecture Notes in Mathematics 1547, Springer-Verlag, 1993.Google Scholar
  6. 6.
    Johnson W.B.: A complementary universal conjugate Banach space and its relation to the approximation problem. Israel J. Math. 13, 311–310 (1972)Google Scholar
  7. 7.
    W. B. Johnson and J. Lindenstrauss, Handbook of the Geometry of Banach Spaces, Volumes 1 and 2, North Holland, 2001, 2003.Google Scholar
  8. 8.
    Lin P.K.: Köthe-Bochner function spaces. Birkhäuser, Boston (2004)zbMATHGoogle Scholar
  9. 9.
    J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I and II, Springer-Verlag, Berlin-Heidelberg-New York, 1977, 1979.Google Scholar
  10. 10.
    H. Pfitzner. L-embedded Banach spaces and a weak version of Phillips lemma, in: W. J. Ricker et al. (eds.), Vector Measures, Integration and Related Topics; Operator Theory 201, pp. 339–344. Birkhäuser, 2009.Google Scholar
  11. 11.
    Phillips R.S.: On linear transformations. Trans. Amer. Math. Soc. 48, 516–541 (1940)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Y. Ueda, On the predual of non-commutative H , preprint arXiv:1002.3672v1.Google Scholar
  13. 13.
    Ülger A.: The weak Phillips property. Colloq. Math. 87, 147–158 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Studies in Advanced Mathematics 25, Cambridge University Press, 1991.Google Scholar

Copyright information

© Birkhäuser / Springer Basel AG 2010

Authors and Affiliations

  1. 1.Université d’OrléansOrléans Cedex 2France

Personalised recommendations