Advertisement

Archiv der Mathematik

, Volume 94, Issue 1, pp 35–41 | Cite as

A virtually free pro-p need not be the fundamental group of a profinite graph of finite groups

  • Wolfgang HerfortEmail author
  • Pavel A. Zalesskii
Article

Abstract

A subgroup of a pro-p product with amalgamation of two p-groups is given which cannot be presented as the pro-p fundamental group of a profinite graph of p-groups.

Mathematics Subject Classification (2000)

Primary 20F18 Secondary 20E06 

Keywords

Pro-p group Virtual freeness Pro-p tree 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bass H.: Covering theory for graphs of groups. J. Pure Appl. Algebra 89, 3–47 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    D. E. Cohen, Groups with free subgroups of finite index, in: Conference on Group Theory, University of Wisconsin-Parkside 1972, Lecture Notes in Mathematics 319, Springer-Verlag (1973), pp. 26–44.Google Scholar
  3. 3.
    Gildenhuys D., Ribes L.: Profinite groups and Boolean graphs. J. Pure Appl. Algebra 12, 21–47 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Herfort W., Zalesskii P.A.: Cyclic Extensions of free pro-p groups. J. Algebra 216, 511–547 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    W. Herfort and P. A. Zalesskii, Virtually free pro-p groups Preprint (2007)Google Scholar
  6. 6.
    Karrass A., Pietrovski A., Solitar D.: Finite and infinite cyclic extensions of free groups. J. Australian Math. Soc. 16, 458–466 (1973)zbMATHCrossRefGoogle Scholar
  7. 7.
    Mel’nikov O.V.: Subgroups and Homology of Free Products of Profinite Groups. Math. USSR Izvestiya 34, 97–119 (1990)zbMATHCrossRefGoogle Scholar
  8. 8.
    Ribes L.: Pro-p groups that act on profinite trees. J. Group Theory 11, 75–93 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Ribes L., Zalesskii P.A.: Conjugacy separability of amalgamated free products of groups. J. Algebra 179, 751–774 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    L. Ribes and P. A. Zalesskii, Profinite Groups, Springer-Verlag 2000.Google Scholar
  11. 11.
    L. Ribes and P. A. Zalesskii, Pro-p Trees and Applications, (2000), Chapter, Ser. Progress in Mathematics, Birkhäuser Boston (2000), Ed. A. Shalev, D. Segal.Google Scholar
  12. 12.
    Scott G.P.: An embedding theorem for groups with a free subgroup of finite index. Bull. London Math. Soc. 6, 304–306 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Serre J.-P.: Sur la dimension cohomologique des groupes profinis. Topology 3, 413–420 (1965)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Wilson J.S.: Profinite Groups, London Math. Soc. Monographs. Clarendon Press, Oxford (1998)Google Scholar
  15. 15.
    P. A. Zalesskii, A geometric characterization of free formations of profinite groups, Sib. Math. J. 30 (1989), 227–235 (translation from Sib. Mat. Zh. 30 (1989), 73–84)Google Scholar
  16. 16.
    P. A. Zalesskii, Normal subgroups of free constructions of profinite groups, and the congruence kernel in the case of a positive characteristic, (Russian) Izv. Ross. Akad. Nauk Ser. Mat. 59 (1995), 59–76, translation in Izv. Math. 59 (1995), 499–516.Google Scholar
  17. 17.
    Zalesskii P.A.: Virtually projective groups. J. Reine Angew. Math. (Crelle’s Journal) 572, 97–110 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    P. A. Zalesskii and O. V. Mel’nikov, Fundamental Groups of Graphs of Profinite Groups, Algebra i Analiz 1 (1989); translated in: Leningrad Math. J. 1 (1990), 921–940.Google Scholar
  19. 19.
    Zalesskii P.A., Mel’nikov O.V.: Subgroups of profinite groups acting on trees. Math. USSR Sbornik 63, 405–424 (1989)CrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  1. 1.University of Technology at ViennaViennaAustria
  2. 2.University of BrasiliaBrasiliaBrazil

Personalised recommendations