Archiv der Mathematik

, 93:299 | Cite as

Large orbits of elements centralized by a Sylow subgroup



If G has a nilpotent normal p-complement and V is a finite, faithful and completely reducible G-module of characteristic p, we prove that there exist \({v_1, v_2 \in V}\) such that \({{\bf C}_{G}{(v_1)}\cap {\bf C}_{G}{(v_2)} = P}\) , where \({P \in {\rm Syl}_p(G)}\) . We hence deduce that, if the normal p-complement K is nontrivial, there exists \({v \in {\bf C}_{V}(P)}\) such that |K : CK(v)|2 > |K|.

Mathematics Subject Classification (2000)

Primary 20D45 Secondary 20D20 


Large orbits Normal p-complement Sylow p-subgroups 


  1. 1.
    Dolfi S.: Large orbits in coprime group actions of solvable groups. Trans. Amer. Math. Soc. 360, 135–152 (2008)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Huppert B.: Endliche Gruppen I. Springer-Verlag, Berlin (1967)MATHGoogle Scholar
  3. 3.
    Huppert B., Manz O.: Orbit sizes of p-groups. Arch. Math. 54, 105–110 (1990)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Isaacs I.M.: Large orbits in actions of nilpotent groups. Proc. Amer. Math. Soc. 127, 45–50 (1999)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Isaacs I.M.: Character Theory of Finite Groups. Dover, New York (1994)MATHGoogle Scholar
  6. 6.
    I. M. Isaacs, Finite Group Theory, AMS, 2008.Google Scholar
  7. 7.
    G. Navarro, Blocks and height zero degrees, in preparation.Google Scholar
  8. 8.
    Passman D.S.: Groups with normal solvable Hall p′-subgroups. Trans. Amer. Math. Soc. 123, 99–111 (1966)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  1. 1.Dipartimento di Matematica U. DiniFirenzeItaly
  2. 2.Departament d’ Àlgebra, Facultat de MatemàtiquesUniversitat de ValènciaBurjassot, ValènciaSpain

Personalised recommendations