Archiv der Mathematik

, Volume 94, Issue 1, pp 1–10 | Cite as

Unordered pairs in the set theory of Bourbaki 1949

Article

Abstract

Working informally in ZF, we build a pair of supertransitive models of Z, of which pair the union is shown to be a supertransitive model of Bourbaki’s 1949 system for set theory in which some unordered pair fails to exist even though ordered pairs are available.

Mathematics Subject Classification (2000)

03E30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernays P.: A system of axiomatic set theory—Part VI. J. Symbolic Logic 13, 65–79 (1948)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Boffa M.: L’axiome de la paire dans le système de Zermelo. Arch. Math. Logik Grundlagenforschung 15, 97–98 (1972)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bourbaki N.: Foundations of Mathematics for the Working Mathematician. J. Symbolic Logic 14, 1–8 (1949)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    N. Bourbaki, Théorie des ensembles, Chap. I. and II, Actualités Scientifiques et Industrielles, no. 1212, Paris, Hermann, (1954).Google Scholar
  5. 5.
    R. O. Gandy, Set-theoretic functions for elementary syntax, in Proceedings of Symposia in Pure Mathematics, 13, Part II, ed. Jech, T., American Mathematical Society, 1974, 103–126.Google Scholar
  6. 6.
    A. Kanamori, The Empty Set, the Singleton and the Ordered Pair, Bull. Symb. Logic 9 (2003), 273–298.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kanamori A.: Zermelo and Set Theory. Bull. Symb. Logic 10, 487–553 (2004)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kanamori A.: Bernays and Set Theory. Bull. Symb. Logic 15, 43–69 (2009)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    J. Lelong-Ferrand and J.-M. Arnaudiès, Algèbre, Editions Dunod, 1978; third edition 1995.Google Scholar
  10. 10.
    Mathias A.R.D.: The Strength of Mac Lane Set Theory. Annals of Pure and Applied Logic, Annals of Pure and Applied Logic 110, 107–234 (2001)MATHMathSciNetGoogle Scholar
  11. 11.
    A. R. D. Mathias, Weak systems of Gandy, Jensen and Devlin, in Set Theory: Centre de Recerca Matemàtica, Barcelona 2003-4, edited by Joan Bagaria and Stevo Todorcevic, Trends in Mathematics, Birkhäuser Verlag, Basel, 2006, 149–224.Google Scholar
  12. 12.
    A. R. D. Mathias, Rudimentary Recursion and Provident Sets, to be submitted.Google Scholar
  13. 13.
    Barkley J., Barkley J.: Review of [3]. J. Symbolic Logic 14, 258–259 (1950)Google Scholar
  14. 14.
    Scott D., McCarty D.: Reconsidering ordered pairs. Bull. Symb. Logic 14, 379–397 (2008)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    T. Skolem, Einige Bemerkungen zur axiomatischen Begründung der Mengenlehre, Wiss. Vorträge gehalten auf dem 5. Kongress der skandinav. Mathematiker in Helsingfors 1922, 1923, 217–232.Google Scholar
  16. 16.
    Sonner J.: On sets with two elements. Arch. Math (Basel) 20, 225–227 (1969)MATHMathSciNetGoogle Scholar
  17. 17.
    Wyler O.: On an axiom of Bourbaki. Proc. Amer. Math. Soc. 8, 672 (1957)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Zermelo E.: Untersuchungen über die Grundlagen der Mengenlehre. Mathematische Annalen 65, 261–281 (1908)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  1. 1.UFR Sciences et Technologies, Laboratoire d’Informatique et de MathématiquesERMIT, Université de la RéunionSainte-ClotildeFrance

Personalised recommendations