Algebra universalis

, 81:2 | Cite as

Loop conditions

  • Miroslav OlšákEmail author


We prove that a weakest non-trivial strong Maltsev condition given by a single identity of the form \(t(\text {variables}) = t(\text {variables})\) is the existence of a term s satisfying \(s(x,y,y,z,z,x)=s(y,x,z,y,x,z)\).


Maltsev conditions Loop conditions Siggers term 

Mathematics Subject Classification

08B20 08B05 



  1. 1.
    Barto, L., Kozik, M.: Absorbing subalgebras, cyclic terms, and the constraint satisfaction problem. Log. Methods Comput. Sci. 8(1:07), 27 (2012)Google Scholar
  2. 2.
    Barto, L., Kozik, M.: Absorption in universal algebra and CSP. In:The constraint satisfaction problem: complexity and approximability, Dagstuhl Follow-Ups, vol. 7, pp. 45–77. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern (2017)Google Scholar
  3. 3.
    Barto, L., Krokhin, A., Willard, R.: Polymorphisms, and how to usethem. In: The Constraint Satisfaction Problem: Complexity and Approximability, Dagstuhl Follow-Ups, vol. 7, pp. 1–44. SchlossDagstuhl. Leibniz-Zent. Inform., Wadern (2017)Google Scholar
  4. 4.
    Bergman, C.: Universal Algebra: Fundamentals and Selected Topics, Pure and Applied Mathematics, vol. 301. CRC Press, Boca Raton, FL (2012)zbMATHGoogle Scholar
  5. 5.
    Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra, Graduate Texts in Mathematics, vol. 78. Springer, New York, Berlin (1981)zbMATHGoogle Scholar
  6. 6.
    Kazda, A.: Taylor term does not imply any nontrivial linear one-equality Maltsev condition. Algebra Univers. 80, 9 (2019).
  7. 7.
    Kearnes, K., Marković, P., McKenzie, R.: Optimal strong Mal’cev conditions for omitting type 1 in locally finite varieties. Algebra Univ. 72(1), 91–100 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    McKenzie, R., Świerczkowski, S.: Non-covering in the interpretability lattice of equational theories. Algebra Univ. 30(2), 157–170 (1993)CrossRefGoogle Scholar
  9. 9.
    McKenzie, R.N., McNulty, G.F., Taylor, W.F.: Algebras, lattices, varieties. Vol. I. The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA (1987)Google Scholar
  10. 10.
    Olšák, M.: The weakest nontrivial idempotent equations. Bull. Lond. Math. Soc. 49(6), 1028–1047 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Siggers, M.H.: A strong Mal’cev condition for locally finite varieties omitting the unary type. Algebra Univ. 64(1–2), 15–20 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Taylor, W.: Some very weak identities. Algebra Univ. 25(1), 27–35 (1988)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Mathematics and PhysicsCharles University in PraguePrague 8Czechia

Personalised recommendations