Algebra universalis

, 80:7 | Cite as

Extending partial projective planes

  • J. B. NationEmail author
Part of the following topical collections:
  1. Algebras and Lattices in Hawaii


This note discusses a computational method for constructing finite projective planes.


Finite projective plane Partial projective plane 

Mathematics Subject Classification

51E14 51A35 



  1. 1.
    Batten, L.M.: Combinatorics of Finite Geometries, 2nd edn. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  2. 2.
    Birkhoff, G.: Combinatorial relations in projective geometries. Ann. Math. 36, 743–748 (1935)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bruck, R.H.: Finite nets II: uniqueness and embedding. Pac. J. Math. 13, 421–457 (1963)CrossRefGoogle Scholar
  4. 4.
    Bruck, R.H., Ryser, H.J.: The nonexistence of certain finite projective planes. Can. J. Math. 1, 88–93 (1949)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Conant, G., Kruckman, A.: Independence in generic incidence structures (2017). arXiv:1709.09626
  6. 6.
    de Bruijn, N.G., Erdős, P.: On a combinatorial problem. Indag. Math. 10, 421–423 (1948)zbMATHGoogle Scholar
  7. 7.
    Dembowski, P.: Finite Geometries. Springer, New York (1968)CrossRefGoogle Scholar
  8. 8.
    Dénes, J., Keedwell, A.D.: Latin Squares and their Applications. Academic, New York (1974)zbMATHGoogle Scholar
  9. 9.
    Dénes, J., Keedwell, A.D.: Latin Squares: New Developments in the Theory and Applications. Annals of Discrete Math, vol. 46. North-Holland, Amsterdam (1991)Google Scholar
  10. 10.
    Dow, S.: An improved bound for extending partial projective planes. Discrete Math. 45, 199–207 (1943)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Freese, R.: Lectures on projective planes.
  12. 12.
    Hall Jr., M.: Projective planes. Trans. Am. Math. Soc. 54, 229–277 (1943)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hall Jr., M.: The Theory of Groups. Macmillan, New York (1959)zbMATHGoogle Scholar
  14. 14.
    Lam, C.W.H., Thiel, L., Swiercz, S.: The non-existence of finite projective planes of order 10. Can. J. Math. 41, 1117–1123 (1989)CrossRefGoogle Scholar
  15. 15.
    Menger, K.: New foundations of projective and affine geometry. Ann. Math. 37, 456–482 (1936)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Nation, J.B., Seffrood, J.: Dual linear spaces generated by a non-Desarguesian configuration. Contrib. Discrete Math. 6, 98–141 (2011)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Shrikhande, S.S.: A note on mutually orthogonal latin squares. Sankhyā Ser. A 23, 115–116 (1961)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Hawai’iHonoluluUSA

Personalised recommendations