Advertisement

Algebra universalis

, 80:1 | Cite as

On supernilpotent algebras

  • Alexander WiresEmail author
Article
  • 34 Downloads

Abstract

We establish a characterization of supernilpotent Mal’cev algebras which generalizes the affine structure of abelian Mal’cev algebras and the recent characterization of 2-supernilpotent Mal’cev algebras. We then show that for varieties in which the two-generated free algebra is finite: (1) neutrality of the higher commutators is equivalent to congruence meet-semidistributivity, and (2) the class of varieties which interpret a Mal’cev term in every supernilpotent algebra is equivalent to the existence of a weak difference term. We then establish properties of the higher commutator in the aforementioned second class of varieties.

Keywords

Higher commutator Supernilpotent Polynomial equivalence 

Mathematics Subject Classification

03C05 08B05 08A30 

Notes

Acknowledgements

I would like to thank Andrew Moorhead and Jakub Opršal for intriguing and enthusiastic discussions about the higher commutator during the Vanderbilt Workshop on Structure and Complexity in Universal Algebra held September 19–30, 2016 in Nashville, TN.

References

  1. 1.
    Aichinger, E., Mudrinski, N.: Some applications of higher commutators for Mal’cev algebras. Algebra Universalis 63, 367–403 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bentz, W., Mayr, P.: Supernilpotence prevents dualizability. J. Aust. Math. Soc. 96, 1–24 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bergman, C.: Universal Algebra: Fundamentals and Selected Topics. Pure and Applied Mathematics. CRC Press, Boca Raton (2012)zbMATHGoogle Scholar
  4. 4.
    Bulatov, A.: On the number of finite Mal’tsev algebras. In: Contr. Gen. Alg. 13, Proceedings of the Dresden Conference 2000 (AAA 60) and the Summer School 1999, pp. 41–54. Verlag Johannes Heyn, Klagenfurt (2001)Google Scholar
  5. 5.
    Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Graduate Texts in Mathematics, vol. 78. Springer, New York (1981)zbMATHGoogle Scholar
  6. 6.
    Freese, R., McKenzie, R.: Commutator Theory in Congruence Modular Varieties. Lecture Notes, vol. 125. London Mathematical Society, London (1987)zbMATHGoogle Scholar
  7. 7.
    Hobby, D., McKenzie, R.: The Structure of Finite Algebras. Contemporary Mathematics, vol. 76. American Mathematical Society, Providence (1988)zbMATHGoogle Scholar
  8. 8.
    Gumm, H.P.: Congruence modularity is permutability composed with distributivity. Arch. Math. (Basel) 36, 569–576 (1981)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gumm, H.P.: Geometrical methods in congruence modular algebras. Mem. Amer. Math. Soc. 21(286) (1983)Google Scholar
  10. 10.
    Hagemann, J., Herrmann, C.: A concrete ideal multiplication for algebraic systems and its relation to congruence distributivity. Arch. Math. (Basel) 32, 234–245 (1979)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Herrmann, C.: Affine algebras in congruence modular varieties. Acta Sci. Math. (Szeged) 41, 119–125 (1979)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Jónsson, B.: Algebras whose congruence lattices are distributive. Math. Scand. 21, 110–121 (1967)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kearnes, K., Szendrei, Á.: The relationship between two commutators. Int. J. Algebra Comput. 9, 497–531 (1998)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kearnes, K., Kiss, E.: The Shape of Congruence Lattices. Memoirs of the American Mathematical Society 222, 1046 (2013)Google Scholar
  15. 15.
    Mayr, P.: Mal’cev algebras with supernilpotent centralizers. Algebra Universalis 65, 193–211 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Moorhead, A.: Higher commutator theory for congruence modular varieties. J. Algebra 513, 133–158 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Mudrinski, N.: 2-Supernilpotent Mal’cev algebras. Monatsh Math. 172, 161–166 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Opršal, J.: A relational description of higher commutators in Mal’cev varieties. Algebra Universalis 76, 367–383 (2016)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Smith, J.D.H.: Mal’cev varieties. Lecture Notes in Mathematics, vol. 554. Springer, Berlin (1976)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Economic MathematicsSouthwestern University of Finance and EconomicsChengduChina

Personalised recommendations