Algebra universalis

, 79:91 | Cite as

The Archimedean property: new horizons and perspectives

  • Antonio Ledda
  • Francesco Paoli
  • Constantine TsinakisEmail author
Part of the following topical collections:
  1. In memory of Bjarni Jónsson


Although there have been repeated attempts to define the concept of an Archimedean algebra for individual classes of residuated lattices, there is no all-purpose definition that suits the general case. We suggest as a possible candidate the notion of a normal-valued and e-cyclic residuated lattice that has the zero radical compact property—namely, a normal-valued and e-cyclic residuated lattice in which every principal convex subuniverse has a trivial radical (understood as the intersection of all its maximal convex subuniverses). We characterize the Archimedean members in the variety of e-cyclic residuated lattices, as well as in various special cases of interest. A theorem to the effect that each Archimedean and prelinear GBL-algebra is commutative, subsuming as corollaries several analogous results from the recent literature, is grist to the mill of our proposal’s adequacy. Finally, we revisit the concept of a hyper-Archimedean residuated lattice, another notion with which researchers have engaged from disparate angles, and investigate some of its properties.


Residuated lattice Substructural logic Archimedean property Conrad’s program Lattice-ordered group Generalized BL-algebra Generalized MV-algebra 

Mathematics Subject Classification

06F05 06D35 06F15 03G10 03B47 



Substantive parts of the present paper were written when the first two authors were visiting the Department of Mathematics at Vanderbilt University (Nashville, TN) and when the third author was visiting the Department of Pedagogy, Psychology, Philosophy at the University of Cagliari, Italy. The assistance and facilities provided by both departments are gratefully acknowledged. We also acknowledge the following funding sources that made these visits possible: the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 689176 (project “Syntax Meets Semantics: Methods, Interactions, and Connections in Substructural logics”); the Visiting Scientists Programme of the University of Cagliari, sponsored by Regione Autonoma della Sardegna; the project “Order properties in mathematics and physics”, CUP: F72F16002920002, sponsored by Regione Autonoma della Sardegna; and the Faculty Research Grants Program of the College of Arts and Science of Vanderbilt University. Finally, we thank the anonymous reviewer for his/her careful reading of the manuscript and helpful suggestions.


  1. 1.
    Aglianò, P., Montagna, F.: Varieties of BL-algebras I: general properties. J. Pure Appl. Algebra 181(2–3), 105–129 (2003)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Anderson, M., Feil, T.: Lattice Ordered Groups: An Introduction. Reidel, Dordrecht (1988)CrossRefGoogle Scholar
  3. 3.
    Bahls, P., Cole, J., Galatos, N., Jipsen, P., Tsinakis, C.: Cancellative residuated lattices. Algebra Univers. 50(1), 83–106 (2003)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Blount, K., Tsinakis, C.: The structure of residuated lattices. Int. J. Algebra Comput. 13(4), 437–461 (2003)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Botur, M., Kühr, J., Liu, L., Tsinakis, C.: Conrad’s program: from \(\ell \)-groups to algebras of logic. J. Algebra 450, 173–203 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Botur, M., Kühr, J., Tsinakis, C.: Strong simplicity and states in ordered algebras: pushing the limits (in preparation) Google Scholar
  7. 7.
    Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning. Kluwer, Dordrecht (1999)zbMATHGoogle Scholar
  8. 8.
    Ciungu, L.C.: Classes of residuated lattices. Ann. Univ. Craiova Math. Comp. Sci. Ser. 33, 189–207 (2006)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Conrad, P.: The structure of a lattice-ordered group with a finite number of disjoint elements. Mich. Math. J. 7, 171–180 (1960)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Conrad, P.: Some structure theorems for lattice-ordered groups. Trans. Am. Math. Soc. 99, 212–240 (1961)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Conrad, P.: The lattice of all convex \(\ell \)-subgroups of a lattice-ordered group. Czechoslov. Math. J. 15, 101–123 (1965)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Conrad, P.: Lex-subgroups of lattice-ordered groups. Czechoslov. Math. J. 18, 86–103 (1968)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Darnel, M.: The Theory of Lattice-Ordered Groups. Dekker, New York (1995)zbMATHGoogle Scholar
  14. 14.
    Dilworth, R.P.: Non-commutative residuated lattices. Trans. Am. Math Soc. 46(3), 426–444 (1939)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Dvurečenskij, A.: On pseudo-MV-algebras. Soft Comput. 5, 347–354 (2001)CrossRefGoogle Scholar
  16. 16.
    Dvurečenskij, A.: Pseudo-MV-algebras are intervals in \(\ell \)-groups. J. Aust. Math. Soc. 72, 427–445 (2002)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Dvurečenskij, A.: Aglianò–Montagna type decomposition of linear pseudo hoops and its applications. J. Pure Appl. Algebra 221(3), 851–861 (2007)CrossRefGoogle Scholar
  18. 18.
    Dvurečenskij, A., Kowalski, T.: Multipotent GBL-algebras. Algebra Univers. 64(1), 25–38 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer, Dordrecht (2000)CrossRefGoogle Scholar
  20. 20.
    Font, J.M., Rodriguez, A.J., Torrens, A.: Wajsberg algebras. Stochastica 8, 5–31 (1984)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Fuchs, L.: Partially Ordered Algebraic Systems. Pergamon Press, Oxford (1963)zbMATHGoogle Scholar
  22. 22.
    Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Studies in Logic and the Foundations of Mathematics. Elsevier, Amsterdam (2007)zbMATHGoogle Scholar
  23. 23.
    Galatos, N., Tsinakis, C.: Generalized MV-algebras. J. Algebra 283, 254–291 (2005)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Georgescu, G., Leuştean, L., Preoteasa, V.: Pseudo-hoops. J. Mult. Valued Log. Soft Comput. 11, 153–184 (2005)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Gil Férez, J., Ledda, A., Paoli, F., Tsinakis, C.: Projectable \(\ell \)-groups and algebras of logic: categorical and algebraic connections. J. Pure Appl. Algebra 220(10), 3345–3572 (2016)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Gil Férez, J., Ledda, A., Tsinakis, C.: Hulls of ordered algebras: projectability, strong projectability and lateral completeness. J. Algebra 483, 429–474 (2017)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Hölder, O.: Die Axiome der Quantität und die Lehre vom Mass. Leipziger Berichte 53(1), 1–64 (1901). (German)zbMATHGoogle Scholar
  28. 28.
    Holland, W.C.: The largest proper variety of lattice ordered groups. Proc. Am. Math. Soc. 57(1), 25–28 (1976)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Jipsen, P., Tsinakis, C.: A survey of residuated lattices. In: Martinez, J. (ed.) Ordered Algebraic Structures, pp. 19–56. Kluwer, Dordrecht (2002)CrossRefGoogle Scholar
  30. 30.
    Jónsson, B., Tsinakis, C.: Products of classes of residuated structures. Studia Logica 77, 267–292 (2004)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Kühr, J.: Generalizations of pseudo MV-algebras and generalized pseudo effect algebras. Czechoslov. Math. J. 58(2), 395–415 (2008)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Ledda, A., Paoli, F., Tsinakis, C.: Lattice-theoretic properties of algebras of logic. J. Pure Appl. Algebra 218, 1932–1952 (2014)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Martinez, J.: Archimedean lattices. Algebra Univers. 3, 247–260 (1973)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Metcalfe, G., Paoli, F., Tsinakis, T.: Ordered algebras and logic. In: Hosni, H., Montagna, F. (eds.) Uncertainty and Rationality, vol. 10, pp. 1–85. Publications of the Scuola Normale Superiore, Pisa (2010)zbMATHGoogle Scholar
  35. 35.
    Mostert, P.S., Shields, A.L.: On the structure of semigroups on a compact manifold with boundary. Ann. Math. 65, 117–143 (1957)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Mundici, D.: Interpretations of AF C* algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65, 15–63 (1986)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Ono, H.: Logics without contraction rules and residuated lattices I, typescript (2001)Google Scholar
  38. 38.
    Paoli, F.: Substructural Logics: A Primer. Kluwer, Dordrecht (2002)CrossRefGoogle Scholar
  39. 39.
    Rachůnek, J.: Radicals in non-commutative generalizations of MV-algebras. Math. Slovaca 52, 135–144 (2002)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Turunen, E.: Hyper-Archimedean BL-algebras are MV-algebras. Math. Log. Q. 53(2), 170–175 (2007)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Wolfenstein, S.: Valeurs normales dans un groupe reticulé, Atti Accademia Nazionale dei Lincei. Rend. Cl. Sci. Fis. Mat. Natur. 8(44), 337–342 (1968)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Young, W.: Varieties generated by unital abelian \(\ell \)-groups. J. Pure Appl. Algebra 219(1), 161–169 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Antonio Ledda
    • 1
  • Francesco Paoli
    • 1
  • Constantine Tsinakis
    • 2
    Email author
  1. 1.Università di CagliariCagliariItaly
  2. 2.Department of MathematicsVanderbilt UniversityNashvilleUSA

Personalised recommendations