Advertisement

Algebra universalis

, 79:31 | Cite as

Unique inclusions of maximal C-clones in maximal clones

  • Mike BehrischEmail author
  • Edith Vargas-García
Open Access
Article

Abstract

C-clones are polymorphism sets of so-called clausal relations, a special type of relations on a finite domain, which first appeared in connection with constraint satisfaction problems in work by Creignou et al. from 2008. We completely describe the relationship regarding set inclusion between maximal C-clones and maximal clones. As a main result we obtain that for every maximal C-clone there exists exactly one maximal clone in which it is contained. A precise description of this unique maximal clone, as well as a corresponding completeness criterion for C-clones is given.

Keywords

Clone C-clone Clausal relation Maximal C-clone Maximal clone 

Mathematics Subject Classification

08A40 08A02 08A99 

Notes

Acknowledgements

Open access funding provided by TU Wien (TUW).

References

  1. 1.
    Behrisch, M.: Clones with nullary operations. In: Power, J., Wingfield, C. (eds.) Proceedings of the Workshop on Algebra, Coalgebra and Topology (WACT 2013). Electronic Notes in Theoretical Computer Science, vol. 303, pp. 3–35. Elsevier Science B. V., Amsterdam (2014)Google Scholar
  2. 2.
    Behrisch, M., Vargas, E.M.: \(C\)-clones and C-automorphism groups. In: Proceedings of the Olomouc Workshop 2010 on General Algebra. Contributions to General Algebra, vol. 19, pp. 1–12. Heyn, Klagenfurt (2010)Google Scholar
  3. 3.
    Behrisch, M., Vargas-García, E.: On the relationship of maximal \(C\)-clones and maximal clones. Preprint MATH-AL-01-2014, TU Dresden, Institut für Algebra (2014). http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-131431
  4. 4.
    Behrisch, M., Vargas-García, E.: Unique inclusions of maximal \(C\)-clones in maximal clones. CoRR abs/1406.6344, pp. 1–20 (2014). arXiv:1406.6344
  5. 5.
    Bodnarčuk, V.G., Kalužnin, L.A., Kotov, V.N., Romov, B.A.: Galois theory for Post algebras. I. Cybernetics 5, 243–252 (1969)CrossRefGoogle Scholar
  6. 6.
    Bodnarčuk, V.G., Kalužnin, L.A., Kotov, V.N., Romov, B.A.: Galois theory for Post algebras. II. Cybernetics 5, 531–539 (1969)CrossRefGoogle Scholar
  7. 7.
    Bodnarčuk, V.G., Kalužnin, L.A., Kotov, V.N., Romov, B.A.: Teopия Гaлya для aлгeбp Пocтa. I, II [Galois theory for Post algebras. I, II]. Kibernetika (Kiev) 5, 1–10; ibid. 1–9 (1969)Google Scholar
  8. 8.
    Creignou, N., Hermann, M., Krokhin, A., Salzer, G.: Complexity of clausal constraints over chains. Theory Comput. Syst. 42, 239–255 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Geiger, D.: Closed systems of functions and predicates. Pac. J. Math. 27, 95–100 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Pöschel, R.: Concrete representation of algebraic structures and a general Galois theory. In: Contributions to General Algebra (Proceedings of the Klagenfurt Conference, Klagenfurt, 1978), pp. 249–272. Heyn, Klagenfurt (1979)Google Scholar
  11. 11.
    Pöschel, R.: A general Galois theory for operations and relations and concrete characterization of related algebraic structures. Report 1980, vol. 1. Akademie der Wissenschaften der DDR, Institut für Mathematik, Berlin (1980)Google Scholar
  12. 12.
    Pöschel, R., Kalužnin, L.A.: Funktionen- und Relationenalgebren. Ein Kapitel der diskreten Mathematik, Mathematische Monographien, vol. 15. VEB Deutscher Verlag der Wissenschaften, Berlin (1979)Google Scholar
  13. 13.
    Rosenberg, I.G.: La structure des fonctions de plusieurs variables sur un ensemble fini [The structure of functions of several variables on a finite set]. C. R. Acad. Sci. Paris 260, 3817–3819 (1965)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Rosenberg, I.G.: Über die funktionale Vollständigkeit in den mehrwertigen Logiken. Struktur der Funktionen von mehreren Veränderlichen auf endlichen Mengen [On functional completeness in multiple-valued logics. Structure of functions of several variables on finite sets]. In: Rozpravy Československé Akademie Věd: Řada matematických a přírodních věd, vol. 80. Academia (1970)Google Scholar
  15. 15.
    Szendrei, Á.: Clones in universal algebra. Séminaire de Mathématiques Supérieures, vol. 99. Presses de l’Université de Montréal, Montreal (1986)Google Scholar
  16. 16.
    Vargas, E.: Clausal relations and \(C\)-clones. Discuss. Math. Gen. Algebra Appl. 30, 147–171 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Vargas, E.M.: Clausal relations and \(C\)-clones. Dissertation, TU Dresden (2011). http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-70905

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Institut für Diskrete Mathematik und GeometrieTechnische Universität WienViennaAustria
  2. 2.Instituto Tecnológico Autónomo de MéxicoMexicoMexico

Personalised recommendations