Algebra universalis

, Volume 76, Issue 1, pp 53–69 | Cite as

Functional completions of Archimedean vector lattices

  • Gerard BuskesEmail author
  • Christopher Schwanke


We study completions of Archimedean vector lattices relative to any nonempty set of positively homogeneous functions on finite-dimensional real vector spaces. Examples of such completions include square mean closed and geometric mean closed vector lattices, amongst others. These functional completions also lead to a universal definition of the complexification of any Archimedean vector lattice and a theory of tensor products and powers of complex vector lattices in a companion paper.

Keywords and phrases

vector lattices functional calculus functional completions convex functions 

2010 Mathematics Subject Classification

Primary: 46A40 Secondary: 06F20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aliprantis C.D., Burkinshaw O.: Positive Operators. Academic Press, Orlando (1985)zbMATHGoogle Scholar
  2. 2.
    Aliprantis C. D., Langford E.: Order completions of Archimedean Riesz spaces and l-groups. Algebra Universalis 19, 151–159 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Azouzi, Y.: Square Mean Closed Real Riesz Spaces. PhD thesis, Université Tunis-El Manar (2008)Google Scholar
  4. 4.
    Azzouzi Y., Boulabiar K., Buskes G.: The de Schipper formula and squares of Riesz spaces. Indag. Math. (N.S.) 17, 479–496 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ball R.N., Hager A.W.: Algebraic extensions of an Archimedean lattice-ordered group II. J. Pure Appl. Algebra 138, 197–204 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Beukers F., Huijsmans C., de Pagter B: Unital embedding and complexification of f-algebras. Math Z. 183, 131–144 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Blumenson L.E.: A derivation of n-dimensional spherical coordinates. Amer. Math. Monthly 67, 63–66 (1960)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Buskes G., Schwanke C.: Complex vector lattices via functional completions. J. Math. Anal. Appl. 434, 1762–1778 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Buskes, G., de Pagter, B., van Rooij, A.: Functional calculus on Riesz spaces. Indag. Math. (N.S.) 2, 423–436 (1991)Google Scholar
  10. 10.
    Buskes G., van Rooij A.: Small Riesz spaces. Math. Proc. Cambridge Philos. Soc. 3, 523–536 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chen, Z.L.: Math Review. MR2320110Google Scholar
  12. 12.
    van Haandel, M.: Completions in Riesz Space Theory. PhD thesis, Katholieke Universiteit Nijmegen (1993)Google Scholar
  13. 13.
    Hager A.W.: Some remarks on the tensor product of function rings. Math. Z. 92, 210–224 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    de Jonge E., van Rooij A. C. M.: Introduction to Riesz spaces. Mathematisch Centrum, Amsterdam (1977)zbMATHGoogle Scholar
  15. 15.
    Kusraev A.G.: Functional calculus and Minkowski duality on vector lattices. Vladikavkaz. Math. Zh. 2, 31–42 (2009)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Luxemburg, W. A. J., Zaanen, A. C.: Riesz Spaces, vol I, North-Holland, Amsterdam (1971)Google Scholar
  17. 17.
    Mittelmeyer, G., Wolff, M.: Über den Absolutbetrag auf komplexen Vektorverbänden. Math. Z. 137, 87–92 (1974) (German)Google Scholar
  18. 18.
    Neuman E., Páles Z.: On comparison of Stolarsky and Gini means. Math. Z. 278, 274–284 (2003)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Phelps R.: Convex Functions, Monotone Operators and Differentiability. Springer, Berlin (1993)zbMATHGoogle Scholar
  20. 20.
    Quinn J.: Intermediate Riesz spaces. Pacific J. Math. 56, 225–263 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Spivak, M.: Calculus on Manifolds. A Modern Approach to Classical Theorems of Advanced Calculus. W. A. Benjamin, Inc., New York (1965)Google Scholar
  22. 22.
    Stolarsky K.B.: Generalizations of the logarithmic mean. Math. Mag. 48, 87–92 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Triki A.: On algebra homomorphisms in complex almost f-algebras. Comment. Math. Univ. Carolin. 43, 23–31 (2002)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Veksler, A. I.: A new construction of the Dedekind completion of vector lattices and l-groups with division. Siberian Math. 10, 891–896 (1969) (English translation)Google Scholar
  25. 25.
    Zaanen A.C.: Riesz Spaces II. North-Holland, Amsterdam (1983)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MississippiMississippiUSA
  2. 2.Unit for BMINorth-West UniversityPotchefstroomSouth Africa

Personalised recommendations