Algebra universalis

, Volume 76, Issue 1, pp 71–98 | Cite as

Semantical conditions for the definability of functions and relations

Article

Abstract

Let \({\mathcal{L}\subseteq \mathcal{L}^\prime}\) be first order languages, let \({R \in \mathcal{L}^\prime- \mathcal{L}}\) be a relation symbol, and let \({\mathcal{K}}\) be a class of \({\mathcal{L}^\prime}\)-structures. In this paper, we present semantical conditions equivalent to the existence of an \({\mathcal{L}}\)-formula \({\varphi(\vec{x})}\) such that \({\mathcal{K}\vDash \varphi(\vec{x}) \leftrightarrow R(\vec{x})}\), where \({\varphi}\) has a specific syntactical form (e.g., quantifier free, positive and quantifier free, existential Horn, etc.). For each of these definability results for relations, we also present an analogous version for the definability of functions. Several applications to natural definability questions in universal algebra have been included; most notably definability of principal congruences. The paper concludes with a look at term-interpolation in classes of structures with the same techniques used for definability. Here we obtain generalizations of two classical term-interpolation results: Pixley’s theorem for quasiprimal algebras, and the Baker–Pixley Theorem for finite algebras with a majority term.

Key words and phrases

first order definability term-interpolation 

2010 Mathematics Subject Classification

Primary: 03C40 Secondary: 08A35 08A30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balbes R., Dwinger P.: Distributive Lattices. University of Missouri Press, Columbia (1974)MATHGoogle Scholar
  2. 2.
    Baker K., Pixley F.: Polynomial interpolation and the Chinese Remainder Theorem for algebraic systems. Math. Z. 143, 165–174 (1975)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Baldwin J., Berman J.: The number of subdirectly irreducible algebras in a variety. Algebra Universalis 5, 379–389 (1975)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Blok W., Pigozzi D.: On the congruence extension property. Algebra Universalis 38, 391–994 (1997)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Burris S.: Remarks on the Fraser-Horn property. Algebra Universalis 23, 19–21 (1986)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Burris S., Sankappanavar H.: A course in Universal Algebra. Springer, New York (1981)CrossRefMATHGoogle Scholar
  7. 7.
    Campercholi M., Vaggione D.: Algebraically expandable classes. Algebra Universalis 61, 151–186 (2009)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Campercholi M., Vaggione D.: Implicit definition of the quaternary discriminator. Algebra Universalis 68, 1–16 (2012)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Czelakowski J., Dziobiak W.: Congruence distributive quasivarieties whose finitely subdirectly irreducible members form a universal class. Algebra Universalis 27, 128–149 (1990)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Geiger D.: Closed Systems of Functions and Predicates. Pacific Journal of Mathematics 27, 95–100 (1968)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Gramaglia H., Vaggione D.: Birkhoff-like sheaf representation for varieties of lattice expansions. Studia Logica 56, 111–131 (1996)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Krauss, P., Clark, D.: Global subdirect products. Amer. Math. Soc. Mem. 210 (1979)Google Scholar
  13. 13.
    Krasner, M.: Endothéorie de Galois abstraite. Séminaire P. Dubreil (Algébre et Théorie des Nombres) 1 (1968)Google Scholar
  14. 14.
    Pixley A.: The ternary discriminator function in universal algebra. Math. Ann. 191, 167–180 (1971)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Volger H.: Preservation theorems for limits of structures and global sections of sheaves of structures. Math. Z. 166, 27–53 (1970)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Werner H.: Discriminator algebras, algebraic representation and model theoretic properties. Akademie-Verlag, Berlin (1978)MATHGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Facultad de Matemática Astronomía y FísicaUniversidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations