Advertisement

Algebra universalis

, Volume 75, Issue 1, pp 75–84 | Cite as

CSP for binary conservative relational structures

  • Alexandr KazdaEmail author
Article

Abstract

We prove that whenever \({\mathbb {A}}\) is a 3-conservative relational structure with only binary and unary relations, then the algebra of polymorphisms of \({\mathbb {A}}\) either has no Taylor operation (i.e., CSP(\({\mathbb {A}}\)) is NP-complete), or it generates an SD(\({\wedge}\)) variety (i.e., CSP(\({\mathbb {A}}\)) has bounded width).

2010 Mathematics Subject Classification

Primary: 08A02 Secondary: 03C05 68R05 

Key words and phrases

meet-semidistributivity clone constraint satisfaction problem weak near unanimity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atserias A.: On digraph coloring problems and treewidth duality. European J. Combin. 29, 796–820 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Barto, L.: The dichotomy for conservative constraint satisfaction problems revisited. In: 26th Annual IEEE Symposium on Logic in Computer Science (LICS 2011), pp. 301–310. IEEE, Washington (2011)Google Scholar
  3. 3.
    Barto, L., Kozik, M.: Constraint satisfaction problems of bounded width. In: 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2009), pp. 595–603. IEEE, Atlanta (2009)Google Scholar
  4. 4.
    Bodnarchuk V., Kaluzhnin L., Kotov V., Romov B.: Galois theory for Post algebras. I. Cybernetics 5, 243–252 (1969)CrossRefGoogle Scholar
  5. 5.
    Bulatov, A.A.: Complexity of conservative constraint satisfaction problems. ACM Trans. Comput. Log. 12, 24:1–24:66 (2011)Google Scholar
  6. 6.
    Bulatov A., Jeavons P., Krokhin A.: Classifying the complexity of constraints using finite algebras. SIAM J. Comput. 34, 720–742 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Bulín, J., Delić, D., Jackson, M., Niven, T.: On the reduction of the CSP dichotomy conjecture to digraphs. In: C. Schulte (ed.) Principles and Practice of Constraint Programming. Lecture Notes in Computer Science, vol. 8124, pp. 184–199. Springer, Berlin (2013)Google Scholar
  8. 8.
    Geiger D.: Closed systems of functions and predicates. Pacific J. Math. 27, 95–100 (1968)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Hell, P., Rafiey, A.: The dichotomy of list homomorphisms for digraphs. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1703–1713. SIAM (2011)Google Scholar
  10. 10.
    Hobby, D., McKenzie, R.: The Structure of Finite Algebras. American Mathematical Society (1988)Google Scholar
  11. 11.
    Kearnes, K.A., Kiss, E.W.: The shape of congruence lattices. Mem. Amer. Math. Soc. 222 (2013)Google Scholar
  12. 12.
    Kozik M., Krokhin A., Valeriote M., Willard R.: Characterizations of several Maltsev conditions. Algebra Universalis 73, 205–224 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Larose B., Tesson P.: Universal algebra and hardness results for constraint satisfaction problems. Theoret. Comput. Sci. 410, 1629–1647 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Pöschel, R.: A general Galois theory for operations and relations and concrete characterization of related algebraic structures. Report, vol. R-01/80. Akademie der Wissenschaften der DDR, Institut für Mathematik, Berlin (1980). www.math.tu-dresden.de/~poeschel/poePUBLICATIONSpdf/poeREPORT80.pdf
  15. 15.
    Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing (STOC 1978), pp. 216–226. ACM, New York (1978)Google Scholar

Copyright information

© Springer International Publishing 2015

Authors and Affiliations

  1. 1.IST AustriaKlosterneuburgAustria

Personalised recommendations