Advertisement

Algebra universalis

, Volume 73, Issue 3–4, pp 297–320 | Cite as

Dualities for modal algebras from the point of view of triples

  • Dirk HofmannEmail author
  • Pedro Nora
Article

Abstract

In this paper, we show how the theory of monads can be used to deduce in a uniform manner several duality theorems involving categories of relations on one side and categories of algebras with homomorphisms preserving only some operations on the other. Furthermore, we investigate the monoidal structure induced by the Cartesian product on the relational side and show that in some cases, the corresponding operation on the algebraic side represents bimorphisms.

2010 Mathematics Subject Classification

Primary: 18C15 Secondary: 03G05 03G10 18A40 18C20 54H10 

Key words and phrases

Boolean algebra distributive lattice monad Kleisli construction dual equivalence Stone space spectral space Vietoris functor tensor product 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories: The Joy of Cats. Pure and Applied Mathematics (New York). John Wiley & Sons Inc., New York (1990). Republished in: Reprints in Theory and Applications of Categories, no. 17, 1–507 (2006)Google Scholar
  2. 2.
    Beck, J.M.: Triples, algebras and cohomology. Ph.D. thesis, Columbia University (1967). Republished in: Reprints in Theory and Applications of Categories, No. 2, 1–59 (2003)Google Scholar
  3. 3.
    Bonsangue M.M., Kurz A., Rewitzky I.M.: Coalgebraic representations of distributive lattices with operators. Topology Appl. 154, 778–791 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Celani S.: Generalized join-hemimorphisms on Boolean algebras. Int. J. Math. Math. Sci. 11, 681–693 (2003)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Cignoli R., Lafalce S., Petrovich A.: Remarks on Priestley duality for distributive lattices. Order 8, 299–315 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Clark, D.M., Davey, B.A.: Natural Dualities for the Working Algebraist, Cambridge Studies in Advanced Mathematics, vol. 57. Cambridge University Press, Cambridge (1998)Google Scholar
  7. 7.
    Clementino, M.M., Tholen, W.: A characterization of the Vietoris topology. In: Proceedings of the 12th Summer Conference on General Topology and its Applications (North Bay, ON, 1997), vol. 22, 71–95 (1997)Google Scholar
  8. 8.
    Dimov, G.D., Tholen, W.: A characterization of representable dualities. In: Categorical topology and its relation to analysis, algebra and combinatorics (Prague, 1988), pp. 336–357. World Sci. Publ., Teaneck (1989)Google Scholar
  9. 9.
    Escardó, M.H.: Injective spaces via the filter monad. In: Proceedings of the 12th Summer Conference on General Topology and its Applications (North Bay, ON, 1997), vol. 22, 97–100 (1997)Google Scholar
  10. 10.
    Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M.W., Scott, D.S.: A Compendium of Continuous Lattices. Springer, Berlin (1980)Google Scholar
  11. 11.
    Halmos P.R.: Algebraic logic. I. Monadic Boolean algebras. Compositio Math. 12, 217–249 (1956)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Hofmann D.: The enriched Vietoris monad on representable spaces. J. Pure Appl. Algebra 218, 2274–2318 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Johnstone, P.T.: Stone spaces, Cambridge Studies in Advanced Mathematics, vol. 3. Cambridge University Press, Cambridge (1986). Reprint of the 1982 editionGoogle Scholar
  14. 14.
    Jónsson B., Tarski A.: Boolean algebras with operators. I. Amer. J. Math. 73, 891–939 (1951)CrossRefzbMATHGoogle Scholar
  15. 15.
    Jónsson B., Tarski A.: Boolean algebras with operators. II. Amer. J. Math. 74, 127–162 (1952)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Jung, A.: Stably compact spaces and the probabilistic powerspace construction. In: J. Desharnais, P. Panangaden (eds.) Domain-theoretic Methods in Probabilistic Processes, vol. 87 (2004)Google Scholar
  17. 17.
    Kegelmann, M.: Continuous domains in logical form. Ph.D. thesis, School of Computer Science, The University of Birmingham (1999)Google Scholar
  18. 18.
    Kupke C., Kurz A., Venema Y.: Stone coalgebras. Theoret. Comput. Sci. 327, 109–134 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Lawson J.: Stably compact spaces. Math. Structures Comput. Sci. 21, 125–169 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    MacDonald, J., Sobral, M.: Aspects of monads. In: Categorical foundations, Encyclopedia Math. Appl., vol. 97, pp. 213–268, Cambridge Univ. Press, Cambridge (2004)Google Scholar
  21. 21.
    Manes, E.G.: A triple theoretic construction of compact algebras. Sem. on Triples and Categorical Homology Theory, ETH Zürich 1966/67, Lect. Notes Math. 80, 91-118 (1969)Google Scholar
  22. 22.
    Nachbin, L.: Topologia e Ordem. Univ. of Chicago Press (1950), in Portuguese. English translation: Topology and Order, Van Nostrand, Princeton (1965)Google Scholar
  23. 23.
    Negrepontis J.W.: Duality in analysis from the point of view of triples. J. Algebra 19, 228–253 (1971)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Petrovich A.: Distributive lattices with an operator. Studia Logica 56, 205–224 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Poppe H.: Einige Bemerkungen über den Raum der abgeschlossenen Mengen. Fund. Math. 59, 159–169 (1966)zbMATHMathSciNetGoogle Scholar
  26. 26.
    Porst, H.E.: What is concrete equivalence? Appl. Categ. Structures 2(1), 57–70 (1994)Google Scholar
  27. 27.
    Porst, H.E., Tholen, W.: Concrete dualities. In: Category theory at work (Bremen, 1990), Res. Exp. Math., vol. 18, 111–136, Heldermann, Berlin (1991)Google Scholar
  28. 28.
    Priestley H.A.: Representation of distributive lattices by means of ordered stone spaces. Bull. London Math. Soc. 2, 186–190 (1970)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Priestley H.A.: Ordered topological spaces and the representation of distributive lattices. Proc. London Math. Soc. 24, 507–530 (1972)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Pumplün D.: Eine Bemerkung über Monaden und adjungierte Funktoren. Math. Ann. 185, 329–337 (1970)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Pumplün D.: Eilenberg–Moore algebras revisited. Seminarberichte, FB Mathematik u. Inf., Fernuniversität Hagen 29, 97–144 (1988)Google Scholar
  32. 32.
    Sambin G., Vaccaro V.: Topology and duality in modal logic. Ann. Pure Appl. Logic 37, 249–296 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Schalk, A.: Algebras for generalized power constructions. Ph.D. thesis, Technische Hochschule Darmstadt (1993)Google Scholar
  34. 34.
    Simmons H.: A couple of triples. Topology Appl. 13, 201–223 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Stone M.H.: The theory of representations for Boolean algebras. Trans. Amer. Math. Soc. 40, 37–111 (1936)MathSciNetGoogle Scholar
  36. 36.
    Stone, M.H.: Topological representations of distributive lattices and Brouwerian logics. Časopis pro pěstování matematiky a fysiky 67, 1–25 (1938)Google Scholar
  37. 37.
    Stralka A.: A partially ordered space which is not a Priestley space. Semigroup Forum 20, 293–297 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Tholen, W.: Relative Bildzerlegungen und algebraische Kategorien. Ph.D. thesis, Westfälische Wilhelms-Universität Münster (1974)Google Scholar
  39. 39.
    Tholen W.: Ordered topological structures. Topology Appl. 156, 2148–2157 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Vietoris L.: Bereiche zweiter Ordnung. Monatsh. Math. Phys. 32, 258–280 (1922)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Wright F.B.: Some remarks on Boolean duality. Portugal. Math. 16, 109–117 (1957)MathSciNetGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Center for Research and Development in Mathematics and Applications, Department of MathematicsUniversity of AveiroAveiroPortugal

Personalised recommendations