Algebra universalis

, Volume 71, Issue 2, pp 127–153 | Cite as

Stone style duality for distributive nearlattices

  • Sergio CelaniEmail author
  • Ismael Calomino


The aim of this paper is to study the variety of distributive nearlattices with greatest element. We will define the class of N-spaces as sober-like topological spaces with a basis of open, compact, and dually compact subsets satisfying an additional condition. We will show that the category of distributive nearlattices with greatest element whose morphisms are semi-homomorphisms is dually equivalent to the category of N-spaces with certain relations, called N-relations. In particular, we give a duality for the category of distributive nearlattices with homomorphisms. Finally, we apply these results to characterize topologically the one-to-one and onto homomorphisms, the subalgebras, and the lattice of the congruences of a distributive nearlattice.

2010 Mathematics Subject Classification

Primary: 06A12 Secondary: 03G10 06D50 

Key words and phrases

distributive nearlattices prime ideal topological representation Stone spaces 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbott J.C.: Semi-boolean algebra. Mat. Vestnik 19, 177–198 (1967)MathSciNetGoogle Scholar
  2. 2.
    Araújo R., Kinyon M.: Independent axiom systems for nearlattices. Czech. Math. J. 61, 975–992 (2011)CrossRefzbMATHGoogle Scholar
  3. 3.
    Balbes, R., Dwinger, P.H.: Distributive Lattices. University of Missouri Press (1974)Google Scholar
  4. 4.
    Bezhanishvili G., Jansana R.: Priestley style duality for distributive meet-semilattices. Studia Logica 98, 83–122 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Celani S.A.: Topological representation of distributive semilattices. Scientiae Math. Japonicae 8, 41–51 (2003)MathSciNetGoogle Scholar
  6. 6.
    Celani S.A., Cabrer L.M.: Topological duality for Tarski algebras. Algebra Universalis 58, 73–94 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Chajda I., Chajda I., Chajda I.: An example of a congruence distributive variety having no near-unanimity term. Acta Univ. M. Belii Math. 13, 29–31 (2006)zbMATHGoogle Scholar
  8. 8.
    Chajda, I., Halaš, R., Kühr J.: Semilattice Structures. Research and Exposition in Mathematics, vol. 30. Heldermann (2007)Google Scholar
  9. 9.
    Chajda, I., Kolařík, M.: Ideals, congruences and annihilators on nearlattice. Acta Univ. Palacki. Olomuc. Fac. rer. nat. Math. 46, 25–33 (2007)Google Scholar
  10. 10.
    Chajda, I., Kolařík, M.: Nearlattices. Discrete Math. 308, 4906–4913 (2008)Google Scholar
  11. 11.
    Cornish W.H., Hickman R.C.: Weakly distributive semilattices. Acta Math. Acad. Sci. Hungar. 32, 5–16 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Grätzer, G.: General Lattice Theory. Birkhäuser (1998)Google Scholar
  13. 13.
    Halaš, R.: Subdirectly irreducible distributive nearlattices. Miskolc Mathematical Notes 7, 141–146 (2006)Google Scholar
  14. 14.
    Hickman R.C.: Join algebras. Comm. Algebra 8, 1653–1685 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Stone, M.: Topological representation of distributive lattices and Brouwerian logics. Casopis pešt. mat. fys. 67, 125 (1937)Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.CONICET and Departamento de Matemáticas, Facultad de Ciencias ExactasUniv. Nac. del CentroTandilArgentina

Personalised recommendations