Advertisement

Algebra universalis

, Volume 71, Issue 1, pp 23–29 | Cite as

Large free sets in powers of universal algebras

  • Taras Banakh
  • Artur Bartoszewicz
  • Szymon Gła̧b
Open Access
Article
  • 357 Downloads

Abstract

We prove that for each universal algebra \({(A, \mathcal{A})}\) of cardinality \({|A| \geq 2}\) and infinite set X of cardinality \({|X| \geq | \mathcal{A}|}\) , the X-th power \({(A^{X}, \mathcal{A}^{X})}\) of the algebra \({(A, \mathcal{A})}\) contains a free subset \({\mathcal{F} \subset A^{X}}\) of cardinality \({|\mathcal{F}| = 2^{|X|}}\) . This generalizes the classical Fichtenholtz–Kantorovitch–Hausdorff result on the existence of an independent family \({\mathcal{I} \subset \mathcal{P}(X)}\) of cardinality \({|\mathcal{I}| = |\mathcal{P}(X)|}\) in the Boolean algebra \({\mathcal{P}(X)}\) of subsets of an infinite set X.

2010 Mathematics Subject Classification

Primary: 17A50 Secondary: 08A99 

Key words and phrases

free set universal algebra 

References

  1. 1.
    Araújo, J., Fountain, J.J.: The origins of independence algebras. In: Semigroups and Languages. pp. 54–67. World Sci. Publ., River Edge, NJ, (2004)Google Scholar
  2. 2.
    Balcar B., Franěk F.: Independent families in complete Boolean algebras. Trans. Amer. Math. Soc. 274, 607–618 (1982)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Banakh, T., Bartoszewicz, A., Gła̧b, Sz.: Independent and free sets in universal algebras (2012, manuscript). http://arxiv.org/abs/1209.6444
  4. 4.
    Bartoszewicz A., Gla̧b Sz., Paszkiewicz A.: Large free linear algebras of real and complex functions. Linear Algebra Appl. 438, 3689–3701 (2013)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Blass, A.: Combinatorial cardinal characteristics of the continuum. In: Handbook of set theory. vol. 1, pp. 395–489. Springer, Dordrecht (2010)Google Scholar
  6. 6.
    Burris S., Sankappanavar H.P.: A course in Universal Algebra. Springer, New York (1981)CrossRefMATHGoogle Scholar
  7. 7.
    Fichtenholz G., Kantorovitch L.: Sur les opérations linéaires dans l’espace des fonctions bornées. Studia Math. 5, 69–98 (1934)Google Scholar
  8. 8.
    Głazek K.: Some old and new problems in the independence theory. Coll. Math. 42, 127–189 (1979)MATHGoogle Scholar
  9. 9.
    Gould V.: Independence algebras. Algebra Universalis 33, 294–318 (1995)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Hausdorff F.: Über zwei Sätze von G. Fichtenholz und L. Kantorovitch. Studia Math. 6, 18–19 (1936)Google Scholar
  11. 11.
    Just, W., Weese, M.: Discovering modern set theory. II. Set-theoretic tools for every mathematician. Amer. Math. Soc., Providence, (1997)Google Scholar
  12. 12.
    Koppelberg, S.: Handbook of Boolean algebras. Vol.1. (Edited by J. Donald Monk and Robert Bonnet). North-Holland, Amsterdam (1989)Google Scholar
  13. 13.
    Marczewski E.: A general scheme of the notions of independence in mathematics. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 6, 731–736 (1958)MATHMathSciNetGoogle Scholar
  14. 14.
    Marczewski, E.: Independence and homomorphisms in abstract algebras. Fund. Math. 50, 45–61 (1961/1962).Google Scholar
  15. 15.
    Marczewski E.: Independence in abstract algebras. Results and problems. Colloq. Math. 14, 169–188 (1966)MATHMathSciNetGoogle Scholar
  16. 16.
    Narkiewicz, W.: Independence in a certain class of abstract algebras. Fund. Math. 50, 333–340 (1961/1962)Google Scholar
  17. 17.
    Narkiewicz W.: On a certain class of abstract algebras. Fund. Math. 54, 115–124 (1964)MATHMathSciNetGoogle Scholar
  18. 18.
    Vaughan, J.: Small uncountable cardinals and topology. In: Open problems in topology, pp. 195–218. North-Holland, Amsterdam (1990)Google Scholar

Copyright information

© The Author(s) 2013

Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Authors and Affiliations

  • Taras Banakh
    • 1
    • 2
  • Artur Bartoszewicz
    • 3
  • Szymon Gła̧b
    • 3
  1. 1.Ivan Franko University of LvivLvivUkraine
  2. 2.Jan Kochanowski UniversityKielcePoland
  3. 3.Institute of MathematicsTechnical University of ŁódźŁódźPoland

Personalised recommendations