Algebra universalis

, Volume 67, Issue 2, pp 175–188 | Cite as

Intuitionistic logic and Muchnik degrees

  • Andrea Sorbi
  • Sebastiaan A. Terwijn
Open Access


We prove that there is a factor of the Muchnik lattice that captures intuitionistic propositional logic. This complements a now classic result of Skvortsova for the Medvedev lattice.

2010 Mathematics Subject Classification

Primary: 03D30 Secondary: 03B55 03G10 

Keywords and phrases

Muchnik lattice Brouwer algebras intuitionistic logic weakly projective distributive lattice 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.


  1. 1.
    Balbes R., Dwinger P.: Distributive Lattices. University of Missouri Press, Columbia (1974)zbMATHGoogle Scholar
  2. 2.
    Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra, Graduate Texts in Mathematics. Springer Verlag, New York, Heidelberg, Berlin (1981)Google Scholar
  3. 3.
    Grätzer G.: Universal Algebra, 2nd edn. Springer-Verlag, New York (1979)zbMATHGoogle Scholar
  4. 4.
    Grätzer G.: General lattice theory, 2nd edn. Birkhäuser, Basel (2003)zbMATHGoogle Scholar
  5. 5.
    Jankov V.A.: The calculus of the weak law of excluded middle. Izv. Math. 2, 997–1004 (1968)zbMATHCrossRefGoogle Scholar
  6. 6.
    Jaśkowski, S.: Recherches sur le système de la logique intuitioniste. In: Actes du Congrès International de Philosophie Scientifique VI, Philosophie des Mathématiques, Actualités Scientifiques et Industrielles, vol. 393, pp. 8–61, Hermann, Paris (1936)Google Scholar
  7. 7.
    Kolmogorov A.: Zur Deutung der intuitionistischen Logik. Math. Z. 35, 58–65 (1932)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Lachlan A.H., Lebeuf R.: Countable initial segments of the degrees of unsolvability. J. Symbolic Logic 41, 289–300 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    McKinsey J.C.C., Tarski A.: Some theorems about the sentential calculi of Lewis and Heyting. J. Symbolic Logic 13, 1–15 (1948)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Medvedev Yu.T.: Degrees of difficulty of the mass problems. Dokl. Akad. Nauk 104, 501–504 (1955)zbMATHGoogle Scholar
  11. 11.
    Medvedev Yu.T.: Finite problems. Dokl. Akad. Nauk (NS) 142, 1015–1018 (1962)Google Scholar
  12. 12.
    Muchnik A.A.: On strong and weak reducibility of algorithmic problems. Sibirsk. Mat. Zh. 4, 1328–1341 (1963) (Russian)zbMATHGoogle Scholar
  13. 13.
    Rasiowa H., Sikorski R.: The Mathematics of Metamathematics. Panstowe Wydawnictwo Naukowe, Warszawa (1963)zbMATHGoogle Scholar
  14. 14.
    Rogers H. Jr.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York (1967)zbMATHGoogle Scholar
  15. 15.
    Skvortsova E.Z.: Faithful interpretation of the intuitionistic propositional calculus by an initial segment of the Medvedev lattice. Sibirsk. Mat. Zh. 29, 171–178 (1988) (Russian)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Sorbi A.: Some remarks on the algebraic structure of the Medvedev lattice. J. Symbolic Logic 55, 831–853 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Sorbi A.: Embedding Brouwer algebras in the Medvedev lattice. Notre Dame J. Formal Logic 32, 266–275 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Sorbi A.: Some quotient lattices of the Medvedev lattice. Z. Math. Logik Grundlag. Math. 37, 167–182 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Sorbi A.: The Medvedev lattice of degrees of difficulty. In: Cooper, S.B., Slaman, T.A., Wainer, S.S. (eds) Computability, Enumerability, Unsolvability - Directions in Recursion theory, London Mathematical Society Lecture Notes Series, pp. 289–312. Cambridge University Press, New York (1996)CrossRefGoogle Scholar
  20. 20.
    Sorbi A., Terwijn S.A.: Intermediate logics and factors of the Medvedev lattice. Ann. Pure Appl. Logic 155, 69–86 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Szatkowski M.: On fragments of Medvedev’s logic. Studia Logica 40, 39–54 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Terwijn S.A.: Constructive logic and the Medvedev lattice. Notre Dame J. Formal Logic 47, 73–82 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Terwijn, S.A.: The finite intervals of the Muchnik lattice. Trans. Amer. Math. Soc. (in press)Google Scholar
  24. 24.
    Troelstra A.S.: On intermediate propositional logics. Indag. Math. 27, 141–152 (1965)MathSciNetGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Dipartimento di Scienze Matematiche ed Informatiche “Roberto Magari”University of SienaSienaItaly
  2. 2.Department of MathematicsRadboud University NijmegenNijmegenthe Netherlands

Personalised recommendations