algebra universalis

, Volume 53, Issue 2–3, pp 287–299 | Cite as

Which posets have a scattered MacNeille completion?

  • Maurice PouzetEmail author
  • Hamza Si Kaddour
  • Nejib Zaguia
Original Paper


A poset is order-scattered if it does not embed the chain η of the rational numbers. We prove that there are eleven posets such that N(P), the MacNeille completion of P, is order-scattered if and only if P embeds none of these posets. Moreover these posets are pairwise non-embeddable in each other. This result completes a previous characterisation due to Duffus, Pouzet, Rival [4]. The proof is based on the “bracket relation”: \(\eta \to [\eta ]^{2}_{3} ,\) a famous result of F. Galvin.

Mathematics Subject Classification (2000).

06A07 06B23 03E02 

Key words and phrases.

MacNeille completion scattered posets partition theorems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Birkhäuser Verlag, Basel 2005

Authors and Affiliations

  • Maurice Pouzet
    • 1
    Email author
  • Hamza Si Kaddour
    • 1
  • Nejib Zaguia
    • 2
  1. 1.LaPCS, MathématiquesUniversité Claude-BernardVilleurbanneFrance
  2. 2.SITEUniversité d’OttawaOttawaCanada

Personalised recommendations