Inflammation Research

, Volume 68, Issue 3, pp 185–194 | Cite as

IL-33 in obesity: where do we go from here?

  • Marcos Felipe Andrade de Oliveira
  • André Talvani
  • Etel Rocha-VieiraEmail author


IL-33 is a cytokine that belongs to the IL-1 family and is classically associated with type 2-like immune responses. In the adipose tissue, IL-33 is related to the beiging of adipocytes and to the maintenance of adipose tissue-resident immune cells, such as innate lymphoid cells 2, alternatively activated macrophages and regulatory T cells, which contribute to the maintenance of adipose tissue homeostasis. In the obese adipose tissue, the number of these cells is diminished, unlike the expression of IL-33, which is up-regulated. However, despite its increased expression, IL-33 is not able to maintain the homeostasis of the obese adipose tissue. IL-33 treatment, on the other hand, highly improves obesity-related inflammatory and metabolic alterations. The evidence that exogenous IL-33, but not adipose tissue-driven IL-33, regulates the inflammatory process in obesity leaves a gap in the understanding of IL-33 biology. Thus, in this review we discuss the potential mechanisms associated with the impaired action of IL-33 in obesity.


Inflammation Type 2 innate lymphocyte Beige adipocyte ST2; metabolism 



AT credits CNPq (305634/2017-8) for the research productivity fellowship. ERV credits CNPq (208183/2017-5) for the post-doc fellowship.


Fundação de Amparo à Pesquisa do Estado de Minas Gerais/Fapemig (APQ-01420-14) and Conselho Nacional de Desenvolvimento Científico e Tecnológico/CNPq (447537/2014-8).


  1. 1.
    Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, Zurauski G, Moshrefi M, Qin J, Li X, Gorman DM, Bazan JF, Kastelein RA. IL33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005;23:479–90.CrossRefGoogle Scholar
  2. 2.
    Hasan A, Al-Ghimlas F, Warsame S, Al-Hubail A, Ahmad R, Bennakhi A, Al-Arouj M, Behbehani K, Dehbi M, Dermime S. IL-33 is negatively associated with the BMI and confers a protective lipid/metabolic profile in non-diabetic but not diabetic subjects. BMC Immunol. 2014;15:1–9.CrossRefGoogle Scholar
  3. 3.
    Ruisong M, Xiaorong H, Gangying H, Chunfeng Y, Changjiang Z, Xuefei L, Yuanhong L, Hong J. The protective role of interleukin-33 in myocardial ischemia and reperfusion is associated with decreased HMGB1 expression and up-regulation of the P38 MAPK signaling pathway. Plos One. 2015. Scholar
  4. 4.
    Momen T, Ahanchian H, Reisi M, Shamsdin SA, Shahsanai A, Keivanfar M. Comparison of interleukin-33 serum levels in asthmatic patients with a control group and relation with the severity of the disease. Int J Prev Med. 2017. Scholar
  5. 5.
    Kageyama Y, Torikai E, Tsujimura K, Kobayashi M. Involvement of IL-33 in the pathogenesis of rheumatoid arthritis: the effect of etanercept on the serum levels of IL-33. Mod Rheumatol. 2012;22:89–93.CrossRefGoogle Scholar
  6. 6.
    Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Investig. 2007;117:175–84.CrossRefGoogle Scholar
  7. 7.
    Winer S, Chan Y, Paltser G, Truong D, Tsui H, Bahrami J, Dorfman R, Wang Y, Zielenski J, Mastronardi F, Maezawa Y, Drucker D, Engleman E, Winer D, Dosch HM. Normalization of obesity-associated insulin resistance through immunotherapy: CD4+ T cells control glucose homeostasis. Nat Med. 2009;15:921–9.CrossRefGoogle Scholar
  8. 8.
    Miller AM, Asquith DL, Hueber AJ, Anderson LA, Holmes WM, Mckenzie AN, Xu D, Sattar N, Mcinnes IB, Liew FY. IL-33 induces protective effects in adipose tissue inflammation during obesity in mice. Circ Res. 2010;107:650–8.CrossRefGoogle Scholar
  9. 9.
    Brestoff JR, Kim BS, Saenz SA, Stine RR, Monticelli LA, Sonnenberg GF, Thome JJ, Farber DL, Lutfy K, Saele P, Artis D. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature. 2015;519:242–6.CrossRefGoogle Scholar
  10. 10.
    Han JM, Wu D, Denroche HC, Yao Y, Verchere CB, Levings MK. IL-33 reverses an obesity-induced deficit in visceral adipose tissue ST2+ T regulatory cells and ameliorates adipose tissue inflammation and insulin resistance. J Immunol. 2015;194:4777–83.CrossRefGoogle Scholar
  11. 11.
    Zeyda M, Wernly B, Demyanets S, Kaun C, Hammerle M, Hantusch B, Schranz M, Neuhofer A, Iitariu BK, Keck M, Prager G, Wojta J, Stulnig TM. Severe obesity increases adipose tissue expression of interleukin-33 and its receptor ST2, both predominantly detectable in endothelial cells of human adipose tissue. Int J Obes. 2013;37:658–65.CrossRefGoogle Scholar
  12. 12.
    Baekkevold ES, Roussigné M, Yamanaka T, Johansen FE, Jahnsen FL, Amalric F, Brandtzaeg P, Erard M, Haraldsen G, Girard JP. Molecular characterization of NF-HEV, a nuclear factor preferentially expressed in human high endothelial venules. Am J Pathol. 2003;163:69–79.CrossRefGoogle Scholar
  13. 13.
    Carriere V, Roussel L, Ortega N, Lacorre DA, Americh L, Aguilar L, Bouche G, Girard JP. IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. PNAS. 2007;104:282–7.CrossRefGoogle Scholar
  14. 14.
    Moussion C, Ortega N, Girard JP. The IL-1 like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel ‘alarmin’? PLoS One. 2008;3:1–8.CrossRefGoogle Scholar
  15. 15.
    Pichery M, Mirey E, Mercier P, Lefrancais E, Dujardin A, Ortega N, Girard JP. Endogenous IL-33 is highly expressed in mouse epithelial barrier tissues, lymphoid organs, brain, embryos, and inflamed tissues: in situ analysis using a novel Il-33-LacZ gene trap reporter strain. J Immunol. 2012;188:3488–95.CrossRefGoogle Scholar
  16. 16.
    Sanada S, Hakuno D, Higgins LJ, Schreiter ER, McKenzie AN, Lee RT. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Investig. 2007;117:1538–49.CrossRefGoogle Scholar
  17. 17.
    Miller AM, Xu D, Asquith DL, Denby L, Li Y, Sattar N, Baker AH, McInnes IB, Liew FY. IL-33 reduces the development of atherosclerosis. J Exp Med. 2008;205:339–46.CrossRefGoogle Scholar
  18. 18.
    Smithgall MD, Comeau MR, Yoon BR, Kaufman D, Armitage R, Smith DE. IL-33 amplifies both Th1- and Th2-type responses through its activity on human basophils, allergen-reactive Th2 cells, iNKT and NK cells. Int Immunol. 2008;20:1019–30.CrossRefGoogle Scholar
  19. 19.
    Bao Q, Lv R, Lei M. IL-33 attenuates mortality by promoting IFN-γ production in sepsis. Inflamm Res. 2018;67:531–38.CrossRefGoogle Scholar
  20. 20.
    Zaibi MS, Kępczyńska MA, Harikumar P, Alomar SY, Trayhurn P. IL-33 stimulates expression of the GPR84 (EX33) fatty acid receptor gene and of cytokine and chemokine genes in human adipocytes. Cytokine. 2018;110:189–93.CrossRefGoogle Scholar
  21. 21.
    Chackerian AA, Oldham ER, Murphy EE, Schmitz J, Pflanz S, Kastelein R. A. IL-1 receptor accessory protein and ST2 comprise the IL33 receptor complex. J Immunol. 2007;179:2551–5.CrossRefGoogle Scholar
  22. 22.
    Komai-Koma M, Xu D, Li Y, McKenzie AN, McInnes IB, Liew FY. IL-33 is a chemoattractant for human Th2 cells. Eur J Immunol. 2007;37:2779–86.CrossRefGoogle Scholar
  23. 23.
    Vasanthakumar A, Moro K, Xin A, Liao Y, Gloury R, Kawamoto S, Fagarasan S, Mielke LA, Afshar-Sterle S, Masters SL, Nakae S, Saito H, Wentworth JM, Li P, Liao W, Leonard WJ, Smyth GK, Shi W, Nutt SL, Koyasu S, Kallies A. The transcriptional regulators IRF4, BATF and IL-33 orchestrate development and maintenance of adipose tissue-resident regulatory T cells. Nat Immunol. 2015;16:276–85.CrossRefGoogle Scholar
  24. 24.
    Kolodin D, Van Panhuys N, Li C, Magnuson AM, Cipolletta D, Miller CM, Wagers A, Germain RN, Benoist C, Mathis D. Antigen- and cytokine-driven accumulation of regulatory t cells in visceral adipose tissue of lean mice. Cell Metab. 2015;21:543–57.CrossRefGoogle Scholar
  25. 25.
    Chen CC, Kobayashi T, Iijima K, Hsu FC, Kita H. IL-33 dysregulates regulatory T cells and impairs established immunologic tolerance in the lungs. J Allergy Clin Immunol. 2017;140:1351–63.CrossRefGoogle Scholar
  26. 26.
    Yang Z, Grinchuk V, Urban JF Jr, Bohl J, Sun R, Notari L, Yan S, Ramalingam T, Keegan AD, Wynn TA, Shea-Donohue T. Macrophages as IL-25/1L-33 responsive cells play an important role in the induction of type 2 immunity. PLoS One. 2013;8:1–11.CrossRefGoogle Scholar
  27. 27.
    Suzukawa M, Motoyasu I, Koketsu R, Nagase H, Tamura C, Komiya A, Nakae S, Matsushima K, Ohta K, Yamamoto K, Yamaguchi M. An IL-1 cytokine member, IL-33, induces human basophil activation via its ST2 receptor. J Immunol. 2008;181:5981–9.CrossRefGoogle Scholar
  28. 28.
    Ho LH, Ohno T, Oboki K, Kajiwara N, Suto H, Iikura M, Okayama Y, Akira S, Saito H, Galli SJ, Nakae S. IL-33 induces IL-13 production by mouse mast cells independently of IgE-FcepsilonRI signals. J Leukoc Biol. 2007;82:1481–90.CrossRefGoogle Scholar
  29. 29.
    Iikura M, Suto H, Kajiwara N, Oboki K, Ohno T, Okayama Y, Saito H, Galli SJ, Nakae S. IL-33 can promote survival, adhesion and cytokine production in human mast cells. Lab Investig. 2007;87:971–8.CrossRefGoogle Scholar
  30. 30.
    Willebrand R, Voehringer D. IL-33-Induced cytokine secretion and survival of mouse eosinophils is promoted by autocrine GM-CSF. PLoS One. 2016;11:1–14.CrossRefGoogle Scholar
  31. 31.
    Hashiguchi M, Kashiwakura Y, Kojima H, Kobayashi A, Kanno Y, Kobata T. IL-33 activates eosinophils of visceral adipose tissue both directly and via innate lymphoid cells. Eur J Immunol. 2015;45:876–85.CrossRefGoogle Scholar
  32. 32.
    Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T, Kawamoto H, Furusawa J, Ohtani M, Fujii H, Koyasu S. Innate production of th2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature. 2010;463:540–4.CrossRefGoogle Scholar
  33. 33.
    Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M, Langford TK, Bucks C, Kane CM, Fallon PG, Pannell R, Jolin HE, McKenzie AN. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature. 2010;464:1367–70.CrossRefGoogle Scholar
  34. 34.
    Price AE, Liang HE, Sullivan BM, Reinhardt RL, Eisley CJ, Erle DJ, Locksley RM. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. PNAS. 2010;107:11489–94.CrossRefGoogle Scholar
  35. 35.
    Pushparaj PN, Tay HK, H’ng SC, Pitman N, Xu D, McKenzie A, Liew FY, Melendez AJ. The cytokine interleukin-33 mediates anaphylactic shock. PNAS. 2009;106:9773–8.CrossRefGoogle Scholar
  36. 36.
    Bonilla WV, Fröhlich A, Senn K, Kallert S, Fernandez M, Johnson S, Kreutzfeldt M, Hegazy AN, Schrick C, Fallon PG, Klemenz R, Nakae S, Adler H, Merkler D, Löhning M, Pinschewer DD. The alarmin interleukin-33 drives protective antiviral CD8+ T cell responses. Science. 2012;335:984–9.CrossRefGoogle Scholar
  37. 37.
    Sesti-Costa R, Silva GK, Proença-Módena JL, Carlos D, Silva ML, Alves-Filho JC, Arruda E, Liew FY, Silva JS. The IL-33/ST2 pathway controls coxsackievirus B5-induced experimental pancreatitis. J Immunol. 2013;191:283–92.CrossRefGoogle Scholar
  38. 38.
    Bourgeois E, Van LP, Samson M, Diem S, Barra A, Roga S, Gombert JM, Schneider E, Dy M, Gourdy P, Girard JP, Herbelin A. The pro-Th2 cytokine IL-33 directly interacts with invariant NKT and NK cells to induce IFN-gamma production. Eur J Immunol. 2009;39:1046–55.CrossRefGoogle Scholar
  39. 39.
    Le HT, Tran VG, Kim W, Kim J, Cho HR, Kwon B. IL-33 priming regulates multiple steps of the neutrophil-mediated anti-Candida albicans response by modulating TLR and dectin-1 signals. J Immunol. 2012;189:287–95.CrossRefGoogle Scholar
  40. 40.
    Lan F, Yuan B, Liu T, Luo X, Huang P, Liu Y, Dai L, Yin H. Interleukin-33 facilitates neutrophil recruitment and bacterial clearance in S. aureus-caused peritonitis. Mol Immunol. 2016;72:74–80.CrossRefGoogle Scholar
  41. 41.
    Alves-Filho JC1, Sônego F, Souto FO, Freitas A, Verri WA Jr, Auxiliadora-Martins M, Basile-Filho A, McKenzie AN, Xu D, Cunha FQ, Liew FY. Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection. Nat Med. 2010;16:708–12.CrossRefGoogle Scholar
  42. 42.
    Zarpelon AC, Rodrigues FC1, Lopes AH, Souza GR, Carvalho TT, Pinto LG1, Xu D, Ferreira SH, Alves-Filho JC, McInnes IB, Ryffel B, Quesniaux VF, Reverchon F, Mortaud S, Menuet A, Liew FY, Cunha FQ, Cunha TM, Verri WA Jr. Spinal cord oligodendrocyte-derived alarmin IL-33 mediates neuropathic pain. FASEB J. 2016;30:54–65.CrossRefGoogle Scholar
  43. 43.
    Cayrol C, Girard JP. Interleukin-33 (IL-33): a nuclear cytokine from the IL-1 family. Immunol Rev. 2018;281:154–68.CrossRefGoogle Scholar
  44. 44.
    Zhao J, Zhang H, Liu SB, Han P, Hu S, Li Q, Wang ZF, Mao-Ying QL, Chen HM, Jiang JW, Wu GC, Mi WL, Wang YQ. Spinal interleukin-33 and its receptor ST2 contribute to bone cancer-induced pain in mice. Neuroscience. 2013;253:172–82.CrossRefGoogle Scholar
  45. 45.
    Aimo A, Migliorini P, Vergaro G, Franzini M, Passino C, Maisel A, Emdin M. The IL-33/ST2 pathway, inflammation and atherosclerosis: trigger and target? Int J Cardiol. 2018;267:188–92.CrossRefGoogle Scholar
  46. 46.
    Ryba-Stanisławowska M, Buksa L, Brandt A, Juhas U, Myśliwiec M. IL-33 improves the suppressive potential of regulatory T cells in patients with type 1 diabetes. Diabetes Res Clin Pract. 2017;128:67–73.CrossRefGoogle Scholar
  47. 47.
    Nascimento DC, Melo PH, Piñeros AR, Ferreira RG, Colón DF, Donate PB, Castanheira FV, Gozzi A, Czaikoski PG, Niedbala W, Borges MC, Zamboni DS, Liew FY, Cunha FQ, Alves-Filho JC. IL-33 contributes to sepsis-induced long-term immunosuppression by expanding the regulatory T cell population. Nat Commun. 2017;8:1–14.CrossRefGoogle Scholar
  48. 48.
    Ali S, Mohs A, Thomas M, Klare J, Ross R, Schmitz ML, Martin MU. The dual function cytokine IL-33 interacts with the transcription factor NF-κB to dampen NF-κB-stimulated gene transcription. J Immunol. 2011;187:1609–1614.CrossRefGoogle Scholar
  49. 49.
    Lee EJ, So MW, Hong S, Kim YG, Yoo B, Lee CK. Interleukin-33 acts as a transcriptional repressor and extracellular cytokine in fibroblast-like synoviocytes in patients with rheumatoid arthritis. Cytokine. 2017;77:35–43.CrossRefGoogle Scholar
  50. 50.
    Gautier V, Cayrol C, Farache D, Roga S, Monsarrat B, Burlet-Schiltz O, Peredo AG, Girard J. Extracellular IL-33 cytokine, but not endogenous nuclear IL-33, regulates protein expression in endothelial cells. Sic Rep. 2016;6:34255.CrossRefGoogle Scholar
  51. 51.
    Cayrol C, Girard JP. The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1. PNAS. 2009;106:9021–6.CrossRefGoogle Scholar
  52. 52.
    Ali S, Nguyen DQ, Falk W, Martin MU. Caspase 3 inactivates biologically active full length interleukin-33 as a classical cytokine but does not prohibit nuclear translocation. Biochem Biophys Res Commun. 2010;391:1512–6.CrossRefGoogle Scholar
  53. 53.
    Luthi AU, Cullen SP, McNeela EA, Duriez PJ, Afonina IS, Sheridan C, Brumatti G, Taylor RC, Kersse K, Vandenabeele P, Lavelle EC, Martin SJ. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity. 2009;31:84–98.CrossRefGoogle Scholar
  54. 54.
    Talabot-Ayer D, Lamacchia C, Gabay C, Palmer G. Interleukin-33 is biologically active independently of caspase-1 cleavage. J Biol Chem. 2009;284:19420–6.CrossRefGoogle Scholar
  55. 55.
    Ohno T, Oboki K, Kajiwara N, Morii E, Aozasa K, Flavell RA, Okumura K, Saito H, Nakae S. Caspase-1, caspase-8, and calpain are dispensable for IL-33 release by macrophages. J Immunol. 2009;183:7890–7.CrossRefGoogle Scholar
  56. 56.
    Madouri F, Guillou N, Fauconnier L, Marchiol T, Rouxel N, Chenuet P, Ledru A, Aprtoh L, Ghiringhelli F, Chamaillard M, Zheng SG, Trovero F, Quesniaux VFJ, Ryffel B, Togbe D. Caspase-1 activation by NLRP3 inflammasome dampens IL-33 dependent house dust mite-induced allergic lung inflammation. J Mol Cell Biol. 2015;7:351–65.CrossRefGoogle Scholar
  57. 57.
    Zhao W, Hu Z. The enigmatic processing and secretion of interleukin-33. Cell Mol Immunol. 2010;7:260–2.CrossRefGoogle Scholar
  58. 58.
    Lefrançais E, Roga S, Gautier V, Gonzalez-De-Peredo A, Monsarrat B, Girard JP, Cayrol C. IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G. PNAS. 2012;109:1673–8.CrossRefGoogle Scholar
  59. 59.
    Martin SJ, Henry CM, Cullen SP. A perspective on mammalian caspases as positive and negative regulators of inflammation. Mol Cell. 2012;46:387–97.CrossRefGoogle Scholar
  60. 60.
    Wood IS, Wang B, Trayhurn P. IL-33, a recently identified interleukin-1 gene family member, is expressed in human adipocytes. Biochem Biophys Res Commun. 2009;384:105–9.CrossRefGoogle Scholar
  61. 61.
    Molofsky AB, Nussbaum JC, Liang HE, Van Dyken SJ, Cheng LE, Mohapatra A, Chawla A, Locksley RM. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J Exp Med. 2013;210:535–49.CrossRefGoogle Scholar
  62. 62.
    Lee M, Odegaard JI, Mukundan L, Qiu Y, Molofsky AB, Nussubaum JC, Yun K, Locksley RM, Chawla A. Activated type 2 innate lymphoid cells regulates beige fat biogenesis. Cell. 2015;160:74–87.CrossRefGoogle Scholar
  63. 63.
    Shabalina IG, Petrovic N, de Jong JM, Kalinovich AV, Cannon B, Nedergaard J. UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic. Cell Rep. 2013;5:1196–203.CrossRefGoogle Scholar
  64. 64.
    Wu J, Boström P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G, Huang K, Tu H, van Marken Lichtenbelt WD, Hoeks J, Enerbäck S, Schrauwen P, Spiegelman BM. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150:366–76.CrossRefGoogle Scholar
  65. 65.
    Odegaard JI, Lee MW, Sogawa Y, Bertholet AM, Locksley RM, Weinberg DE, Kirichok Y, Deo RC, Chawla A. Perinatal licensing of thermogenesis by IL-33 and ST2. Cell. 2016;166:841–54.CrossRefGoogle Scholar
  66. 66.
    Stumpo R, Kauer M, Martin S, Kolb H. Alternative activation of macrophage by IL-10. Pathobiology. 1999;67(5–6):245–8.CrossRefGoogle Scholar
  67. 67.
    Nguyen KD, Qiu Y, Cui X, Goh YP, Mwangi J, David T, Mukundan L, Brombacher F, Locksley RM, Chawla A. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature. 2011;480:104–8.CrossRefGoogle Scholar
  68. 68.
    Wu D, Molofsky AB, Liang HE, Ricardo-Gonzalez RR, Jouihan HA, Bando JK, Chawla A, Locksley RM. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science. 2011;332:243–7.CrossRefGoogle Scholar
  69. 69.
    Talukdar S, Oh DY, Bandyopadhyay G, Li D, Xu J, McNelis J, Lu M, Li P, Yan Q, Zhu Y, Ofrecio J, Lin M, Brenner MB, Olefsky JM. Neutrophils mediate insulin resistance in high fat diet fed mice via secreted elastase. Nat Med. 2012;18:1407–12.CrossRefGoogle Scholar
  70. 70.
    Stienstra R, Joosten LAB, Koenen T, Van Tits B, Van Diepen JA, Van Dan Berg SAA, Rensen PCN, Voshol PJ, Fantuzzi G, Hijmans A, Kersten S, Muller M, Van Den Ber WB, Van Rooijen N, Wabitsch M, Kullberg BJ, Van Der Meer JWM, Kanneganti T, Tack CJ, Netea MG. The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity. Cell Metab. 2010;12:593–605.CrossRefGoogle Scholar
  71. 71.
    Ding X, Luo Y, Zhang X, Zheng H, Yang X, Yang X, Liu M. IL-33-driven ILC2/eosinophil axis in fat is induced by sympathetic tone and suppressed by obesity. J Endocrinol. 2016;231:35–48.CrossRefGoogle Scholar
  72. 72.
    Miller AM, Purves D, McConnachie A, Asquith DL, Batty GD, Burns H, Cavanagh J, Ford I, McLean JS, Packard CJ, Shiels PG, Turner H, Velupillai YN, Deans KA, Welsh P, McInnes IB, Sattar N. Soluble ST2 associates with diabetes but not established cardiovascular risk factors: a new inflammatory pathway of relevance to diabetes? PLoS One. 2012;7:1–7.Google Scholar
  73. 73.
    Alkhouri N, Gornicka A, Berk MP, Thapaliya S, Dixon LJ, Kashyap S, Schauer PR, Feldstein AE. Adipocyte apoptosis, a link between obesity, insulin resistance, and hepatic steatosis. J Biol Chem. 2010;285:3428–48.CrossRefGoogle Scholar
  74. 74.
    Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K, Mynatt RL, Ravussin E, Stephens JM, Dixit VD. The NALP3/NLRP3 inflammasome instigates obesity-induced autoinflammation and insulin resistance. Nat Med. 2011;17:179–88.CrossRefGoogle Scholar
  75. 75.
    Ghayur T, Banerjee S, Hugunin M, Butler D, Herzog L, Carter A, Quintal L, Sekut L, Talanian R, Paskind M, Wong W, Kamen R, Tracey D, Allen H. Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production. Nature. 1997;386:619–23.CrossRefGoogle Scholar
  76. 76.
    Molofsky AB, Gool FV, Liang H, Van Dyken SJ, Nussbaum JC, Lee J, Bluestone JA, Locksley RM. Interleukin-33 and interferon-g conter-regulate group 2 innate lymphoid cell activation during immune pertubation. Immunity. 2015;34:161–74.CrossRefGoogle Scholar
  77. 77.
    Kumar S, Tzimas MN, Griswold DE, Young PR. Expression of ST2, an interleukin-1 receptor homologue, is induced by proinflammatory stimuli. Biochem Biophys Res Commun. 1997;235(3):474–8.CrossRefGoogle Scholar
  78. 78.
    Mildner M, Storka A, Lichtenauer M, Mlitz V, Ghannadan M, Hoetzenecker K, Nickl S, Dome B, Tschachler E, Ankersmit HJ. Primary sources and immunological prerequisites for sST2 secretion in humans. Cardiovasc Res. 2010;87(4):769–77.CrossRefGoogle Scholar
  79. 79.
    Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Investig. 2004;114:1752–61.CrossRefGoogle Scholar
  80. 80.
    Cohen ES, Scott IC, Majithiya JB, Rapley L, Kemp BP, England E, Rees DG, Overed-Sayer CL, Woods J, Bond NJ, Veyssier CS, Embrey KJ, Sims DA, Sanith MR, Voudsen KA, Strain MD, Chan DTY, Carmen S, Huntington CE, Flavell L, Xu J, Popovic B, Brightling CE, Vaughan TJ, Butler R, Lowe DC, Higazi DR, Corkill DJ, May RD, Sleeman MA, Mustelin T. Oxidation of the alarmin IL-33 regulates ST2-dependent inflammation. Nat Commun. 2015;6:8327.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Nutrition, Faculty of Health and Biological SciencesUniversidade Federal dos Vales do Jequitinhonha e MucuriDiamantinaBrazil
  2. 2.Department of Biological Sciences, Institute of Exact and Biological SciencesUniversidade Federal de Ouro PretoOuro PretoBrazil
  3. 3.Health and Nutrition Post-Graduate ProgramUniversidade Federal de Ouro PretoOuro PretoBrazil
  4. 4.Ecology of Tropical Biomes Post-Graduate ProgramUniversidade Federal de Ouro PretoOuro PretoBrazil
  5. 5.Faculty of MedicineUniversidade Federal dos Vales do Jequitinhonha e MucuriDiamantinaBrazil
  6. 6.Graduate Program in Physiological SciencesUniversidade Federal dos Vales do Jequitinhonha e MucuriDiamantinaBrazil
  7. 7.Exercise Biology and Immunometabolism LaboratoryCentro Integrado de Pós-graduação e PesquisaDiamantinaBrazil

Personalised recommendations