Advertisement

Inflammation Research

, Volume 68, Issue 3, pp 231–240 | Cite as

MiR-19a mediates the negative regulation of the NF-κB pathway in lipopolysaccharide-induced endometritis by targeting TBK1

  • Nannan Yin
  • Yaping Yang
  • Xiaoyan Wang
  • Chao Yang
  • Xiaofei Ma
  • Aftab Shaukat
  • Gan Zhao
  • Ganzhen DengEmail author
Original Research Paper
  • 52 Downloads

Abstract

Objective

In both humans and animals, endometritis is severe inflammation of the uterus, and it causes great economic losses in dairy cow production. MicroRNAs have been reported to play an important role in various inflammatory diseases. However, the regulatory mechanisms of miR-19a in endometritis remain unclear. Thus, the aims of this study are to investigate the role of miR-19a in a mouse model of lipopolysaccharide (LPS)-induced endometritis and elucidate the possible mechanisms in bovine endometrial epithelial cells (bEECs).

Methods and results

Histological analysis showed that LPS induced severe pathological changes, suggesting that the endometritis mouse model was well established. The qPCR assay indicated that miR-19a expression in the uterine tissues of mice with endometritis and in bEECs with LPS stimulation was significantly reduced. The overexpression of miR-19a significantly decreased the expression of inflammatory cytokines (TNF-α, IL-6 and IL-1β) and the phosphorylation of NF-κB p65 and IκBα. Similar results were also obtained following the knockdown of TBK1. Furthermore, a dual luciferase reporter assay further validated that miR-19a inhibited TBK1 expression by binding directly to the 3′-UTR of TBK1.

Conclusion

We demonstrated that miR-19a has anti-inflammatory effects and mediates the negative regulation of the NF-κB Pathway in LPS-induced endometritis by targeting TBK1.

Keywords

MiR-19a LPS TBK1 Endometritis NF-κB 

Notes

Acknowledgements

Thank you to all members of the Laboratory of Veterinary Clinical Diagnosis for their helpful suggestions. Particularly thanks to Dr. Xiaoyan Wang for the guidance on the experimental technology and design. This work was supported by the National Natural Science Foundation of China (Grant no. 31772816).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Hussain AM, Daniel RC. Bovine endometritis: current and future alternative therapy. Zentralblatt Fur Veterinarmedizin Reihe A. 1991;38(9):641.CrossRefGoogle Scholar
  2. 2.
    Hong-Xia Z, Jun-Li Z, Jian-Zhong S, Hong-Liang F, Hong G, Xiao-Ping A, et al. Prevalence and molecular characterization of fluoroquinolone resistance in escherichia coli isolates from dairy cattle with endometritis in China. Microb Drug Resist. 2014;20(2):162–9.CrossRefGoogle Scholar
  3. 3.
    Sheldon IM, Lewis GS, Leblanc S, Gilbert RO. Defining postpartum uterine disease in cattle. Theriogenology. 2006;65(8):1516.CrossRefGoogle Scholar
  4. 4.
    Credille BC, Woolums AR, Overton MW, Hurley DJ, Giguère S. Expression of inflammation-associated genes in circulating leukocytes and activity of indoleamine-2,3-dioxygenase in dairy cattle with acute puerperal metritis and bacteremia. Res Vet Sci. 2015;101:6.CrossRefGoogle Scholar
  5. 5.
    Lv X, Fu K, Li W, Wang Y, Wang J, Li H, et al. TIIA attenuates LPS-induced mouse endometritis by suppressing the NF-κB signaling pathway. Can J Physiol Pharmacol. 2015;93(11):967.CrossRefGoogle Scholar
  6. 6.
    Vogel NQ, Papasian SN, AA CJ, Morrison Q. DC. The proteasome: a central regulator of inflammation and macrophage function. Immunol Res. 2005;31(3):243–60.CrossRefGoogle Scholar
  7. 7.
    Lee YG, Lee J, Byeon SE, Yoo DS, Kim MH, Lee SY, et al. Functional role of Akt in macrophage-mediated innate immunity. Front Biosci. 2011;16(4):517–30.CrossRefGoogle Scholar
  8. 8.
    Warren JS. Interleukins and tumor necrosis factor in inflammation. Crit Rev Clin Lab Sci. 1990;28(1):37–59.CrossRefGoogle Scholar
  9. 9.
    Yu T, Yi Y-S, Yang Y, Oh J, Jeong D, Cho JY. The pivotal role of TBK1 in inflammatory responses mediated by macrophages. Mediat Inflamm. 2012;2012:8.CrossRefGoogle Scholar
  10. 10.
    Marchlik E, Thakker P, Carlson T, Jiang Z, Ryan M, Marusic S, et al. Mice lacking Tbk1 activity exhibit immune cell infiltrates in multiple tissues and increased susceptibility to LPS-induced lethality. J Leukoc Biol. 2010;88(6):1171–80.CrossRefGoogle Scholar
  11. 11.
    Xie XH, Zang N, Li SM, Wang LJ, Deng Y, He Y, et al. Resveratrol inhibits respiratory syncytial virus-induced IL-6 production, decreases viral replication, and downregulates TRIF expression in airway epithelial cells. Inflammation. 2012;35(4):1392–401.CrossRefGoogle Scholar
  12. 12.
    Clément JF, Meloche S, Servant MJ. The IKK-related kinases: from innate immunity to oncogenesis. Cell Res. 2008;18(9):889–99.CrossRefGoogle Scholar
  13. 13.
    Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136(4):642–55.CrossRefGoogle Scholar
  14. 14.
    Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell. 2003;113(1):25–36.CrossRefGoogle Scholar
  15. 15.
    Dostie J, Mourelatos Z, Yang M, Sharma A, Dreyfuss G. Numerous microRNPs in neuronal cells containing novel microRNAs. RNA. 2003;9(2):180–6.CrossRefGoogle Scholar
  16. 16.
    Wang Y, Keys DN, Au-Young JK, Chen C. MicroRNAs in embryonic stem cells. J Cell Physiol. 2009;218(2):251.CrossRefGoogle Scholar
  17. 17.
    Xu P, Vernooy SY, Guo M, Hay BA. The drosophila MicroRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Current Biology Cb. 2003;13(9):790.CrossRefGoogle Scholar
  18. 18.
    Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD, et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA. 2004;101(32):11755.CrossRefGoogle Scholar
  19. 19.
    Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004;303(5654):83–6.CrossRefGoogle Scholar
  20. 20.
    Zhao HX, Zhao JL, Shen JZ, Fan HL, Guan H, An XP, et al. Prevalence and molecular characterization of fluoroquinolone resistance in Escherichia coli isolates from dairy cattle with endometritis in China. Microb Drug Resist. 2014;20(2):162–9.CrossRefGoogle Scholar
  21. 21.
    Liu F, Li Y, Jiang R, Nie C, Zeng Z, Zhao N, et al. miR-132 inhibits lipopolysaccharide-induced inflammation in alveolar macrophages by the cholinergic anti-inflammatory pathway. Exp Lung Res. 2015;41(5):261–9.CrossRefGoogle Scholar
  22. 22.
    Wang XP, Luoreng ZM, Zan LS, Raza SH, Li F, Li N, et al. Expression patterns of miR-146a and miR-146b in mastitis infected dairy cattle. Mol Cell Prob. 2016;30(5):342–4.CrossRefGoogle Scholar
  23. 23.
    Xu Y, Jin H, Yang X, Wang L, Su L, Liu K, et al. MicroRNA-93 inhibits inflammatory cytokine production in LPS-stimulated murine macrophages by targeting IRAK4. FEBS Lett. 2014;588(9):1692–8.CrossRefGoogle Scholar
  24. 24.
    Hailemariam D, Ibrahim S, Hoelker M, Drillich M, Heuwieser W, Looft C, et al. MicroRNA-regulated molecular mechanism underlying bovine subclinical endometritis. Reprod Fertil Dev. 2014;26(6):898–913.CrossRefGoogle Scholar
  25. 25.
    Salilew-Wondim D, Ibrahim S, Gebremedhn S, Tesfaye D, Heppelmann M, Bollwein H, et al. Clinical and subclinical endometritis induced alterations in bovine endometrial transcriptome and miRNome profile. BMC Genom. 2016;17(1):1–21.CrossRefGoogle Scholar
  26. 26.
    Venturini L, Battmer K, Castoldi M, Schultheis B, Hochhaus A, Muckenthaler MU, et al. Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34 + cells. Blood. 2007;109(10):4399–405.CrossRefGoogle Scholar
  27. 27.
    Chen H, Li X, Liu S, Gu L, Zhou X. MircroRNA-19a promotes vascular inflammation and foam cell formation by targeting HBP-1 in atherogenesis. Sci Rep. 2017;7(1):12089.CrossRefGoogle Scholar
  28. 28.
    Wu Q, Yang Z, An Y, Hu H, Yin J, Zhang P, et al. MiR-19a/b modulate the metastasis of gastric cancer cells by targeting the tumour suppressor MXD1. Cell Death Dis. 2014;5(3):e1144.CrossRefGoogle Scholar
  29. 29.
    Feng Y, Liu J, Kang Y, He Y, Liang B, Yang P, et al. miR-19a acts as an oncogenic microRNA and is up-regulated in bladder cancer. J Exp Clin Cancer Res. 2014;33(1):67.CrossRefGoogle Scholar
  30. 30.
    Jiang WL, Zhang YF, Xia QQ, Zhu J, Yu X, Fan T, et al. MicroRNA-19a regulates lipopolysaccharide-induced endothelial cell apoptosis through modulation of apoptosis signal-regulating kinase 1 expression. BMC Mol Biol. 2015;16:11.CrossRefGoogle Scholar
  31. 31.
    Haj-Salem I, Fakhfakh R, Bérubé J-C, Jacques E, Plante S, Simard MJ, et al. MicroRNA-19a enhances proliferation of bronchial epithelial cells by targeting TGFβR2 gene in severe asthma. Allergy. 2015;70(2):212–9.CrossRefGoogle Scholar
  32. 32.
    Chen B, She S, Li D, Liu Z, Yang X, Zeng Z, et al. Role of miR-19a targeting TNF-alpha in mediating ulcerative colitis. Scand J Gastroenterol. 2013;48(7):815–24.CrossRefGoogle Scholar
  33. 33.
    Wang T, Liu YP, Wang T, Xu BQ, Xu B. ROS feedback regulates the microRNA-19-targeted inhibition of the p47phox-mediated LPS-induced inflammatory response. Biochem Biophys Res Commun. 2017;489(4):361–8.CrossRefGoogle Scholar
  34. 34.
    Pomerantz JL, Baltimore D. NF-κB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. Embo J. 1999;18(23):6694–704.CrossRefGoogle Scholar
  35. 35.
    Leblanc SJ, Duffield TF, Leslie KE, Bateman KG, Keefe GP, Walton JS, et al. Defining and diagnosing postpartum clinical endometritis and its impact on reproductive performance in dairy cows. J Dairy Sci. 2002;85(9):2223–36.CrossRefGoogle Scholar
  36. 36.
    Salilew-Wondim D, Ibrahim S, Gebremedhn S, Tesfaye D, Heppelmann M, Bollwein H, et al. Clinical and subclinical endometritis induced alterations in bovine endometrial transcriptome and miRNome profile. BMC Genom. 2016;17(1):218.CrossRefGoogle Scholar
  37. 37.
    Bin C, Shifeng S, Detang L, Zhihui L, Xiaojun Y, Zhirong Z, et al. Role of miR-19a targeting TNF-α in mediating ulcerative colitis. Scand J Gastroenterol. 2013;48(7):815–24.CrossRefGoogle Scholar
  38. 38.
    Wang T, Liu YP, Wang T, Xu BQ, Xu B. ROS feedback regulates the microRNA-19-targeted inhibition of the p47phox-mediated LPS-induced inflammatory response. Biochem Biophys Res Commun. 2017;489(4):361–368.Google Scholar
  39. 39.
    Pomerantz JL, Baltimore D. NF-kappaB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. Embo J. 2014;18(23):6694–704.CrossRefGoogle Scholar
  40. 40.
    Bonnard M, Mirtsos C, Suzuki S, Graham K, Huang J, Ng M, et al. Deficiency of T2K leads to apoptotic liver degeneration and impaired NF-κB-dependent gene transcription. Embo J. 2000;19(18):4976–85.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nannan Yin
    • 1
  • Yaping Yang
    • 1
  • Xiaoyan Wang
    • 1
  • Chao Yang
    • 1
  • Xiaofei Ma
    • 1
  • Aftab Shaukat
    • 1
  • Gan Zhao
    • 1
  • Ganzhen Deng
    • 1
    Email author
  1. 1.Department of Clinical Veterinary Medicine, College of Veterinary MedicineHuazhong Agricultural UniversityWuhanPeople’s Republic of China

Personalised recommendations