Inflammation Research

, Volume 68, Issue 2, pp 125–145 | Cite as

Antiinflammatory peptides: current knowledge and promising prospects

  • Maryam DadarEmail author
  • Youcef Shahali
  • Sandip Chakraborty
  • Minakshi Prasad
  • Fatemeh Tahoori
  • Ruchi Tiwari
  • Kuldeep Dhama



Inflammation is part of the regular host reaction to injury or infection caused by toxic factors, pathogens, damaged cells, irritants, and allergens. Antiinflammatory peptides (AIPs) are present in all living organisms, and many peptides from herbal, mammalian, bacterial, and marine origins have been shown to have antimicrobial and/or antiinflammatory properties.


In this study, we investigated the effects of antiinflammatory peptides on inflammation, and highlighted the underlying mechanisms responsible for these effects.


In multicellular organisms, including humans, AIPs constitute an essential part of their immune system. In addition, numerous natural and synthetic AIPs are effective immunomodulators and can interfere with signal transduction pathways involved in inflammatory cytokine expression. Among them, some peptides such as antiflammin, N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), and those derived from velvet antler proteins, bee venom, horse fly salivary gland, and bovine β-casein have received considerable attention over the past few years.


This article presents an overview on the major properties and mechanisms of action associated with AIPs as immunomodulatory, chemotactic, antioxidant, and antimicrobial agents. In addition, the results of various studies dealing with effects of AIPs on numerous classical models of inflammation are reviewed and discussed.


Inflammation Antiinflammatory peptides Health Disease Therapeutics 



All the authors acknowledge and thank their respective institutes and universities.


This compilation is a review article written, analyzed, and designed by its authors and required no substantial funding to be stated.

Compliance with ethical standards

Conflict of interest

None of the authors of this paper has a financial or personal relationship with other people or organizations that could inappropriately influence or bias the content of the paper. It is to specifically state that “No Competing interests are at stake and there is No Conflict of Interest” with other people or organizations that could inappropriately influence or bias the content of the paper.


  1. 1.
    Calder PC. n-3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr. 2006;83(6):1505S-19S.Google Scholar
  2. 2.
    Abad MJ, Bedoya LM, Bermejo P. Natural marine anti-inflammatory products. Mini Rev Med Chem. 2008;8(8):740–54.Google Scholar
  3. 3.
    Harizi H, Corcuff J-B, Gualde N. Arachidonic-acid-derived eicosanoids: roles in biology and immunopathology. Trends Mol Med. 2008;14(10):461–9.Google Scholar
  4. 4.
    Shimizu T. Lipid mediators in health and disease: enzymes and receptors as therapeutic targets for the regulation of immunity and inflammation. Annu Rev Pharmacol Toxicol. 2009;49:123–50.Google Scholar
  5. 5.
    Wang YF, Xu X, Fan X, Zhang C, Wei Q, Wang X, et al. A cell-penetrating peptide suppresses inflammation by inhibiting NF-κB signaling. Mol Ther. 2011;19(10):1849–57.Google Scholar
  6. 6.
    Yeung AT, Gellatly SL, Hancock RE. Multifunctional cationic host defence peptides and their clinical applications. Cell Mol Life Sci. 2011;68(13):2161.Google Scholar
  7. 7.
    Mookherjee N, Brown KL, Bowdish DM, Doria S, Falsafi R, Hokamp K, et al. Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. J Immunol. 2006;176(4):2455–64.Google Scholar
  8. 8.
    Håversen L, Ohlsson BG, Hahn-Zoric M, Hanson L, Mattsby-Baltzer I. Lactoferrin down-regulates the LPS-induced cytokine production in monocytic cells via NF-κB. Cell Immunol. 2002;220(2):83–95.Google Scholar
  9. 9.
    Moronta J, Smaldini PL, Docena GH, Añón MC. Peptides of amaranth were targeted as containing sequences with potential anti-inflammatory properties. J Funct Foods. 2016;21:463–73.Google Scholar
  10. 10.
    Björn C. Antimicrobial peptides in the treatment of infectious and inflammatory conditions-Preclinical studies of mechanism of action, efficacy, and safety. 2016. University of Gothenburg. Sahlgrenska Academy.
  11. 11.
    Lai Y, Gallo RL. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 2009;30(3):131–41.Google Scholar
  12. 12.
    Usmani SS, Bedi G, Samuel JS, Singh S, Kalra S, Kumar P, et al. THPdb: Database of FDA-approved peptide and protein therapeutics. PLoS One. 2017;12(7):e0181748.Google Scholar
  13. 13.
    Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Des Discov. 2015;20(1):122–8.Google Scholar
  14. 14.
    Sun G-Y, Yang H-H, Guan X-X, Zhong W-J, Liu Y-P, Du M-Y, et al. Vasoactive intestinal peptide overexpression mediated by lentivirus attenuates lipopolysaccharide-induced acute lung injury in mice by inhibiting inflammation. Mol Immunol. 2018;97:8–15.Google Scholar
  15. 15.
    Gupta S, Sharma AK, Shastri V, Madhu MK, Sharma VK. Prediction of anti-inflammatory proteins/peptides: an insilico approach. J Transl Med. 2017;15(1):7.Google Scholar
  16. 16.
    Chakrabarti S, Jahandideh F, Wu J. Food-derived bioactive peptides on inflammation and oxidative stress. Biomed Res Int. 2014;2014.Google Scholar
  17. 17.
    Guha S, Majumder K. Structural-features of food-derived bioactive peptides with anti-inflammatory activity: A brief review. J Food Biochem. 2018:e12531.Google Scholar
  18. 18.
    Sharma U, Rhaleb N-E, Pokharel S, Harding P, Rasoul S, Peng H, et al. Novel anti-inflammatory mechanisms of N-Acetyl-Ser-Asp-Lys-Pro in hypertension-induced target organ damage. Am J Physiol Heart Circ Physiol. 2008;294(3):H1226-H32.Google Scholar
  19. 19.
    Kurt-Jones EA, Cao L, Sandor F, Rogers AB, Whary MT, Nambiar PR, et al. Trefoil family factor 2 is expressed in murine gastric and immune cells and controls both gastrointestinal inflammation and systemic immune responses. Infect Immun. 2007;75(1):471–80.Google Scholar
  20. 20.
    Collins PE, Grassia G, Colleran A, Kiely PA, Ialenti A, Maffia P, et al. Mapping the interaction of B cell leukemia 3 (BCL-3) and nuclear factor κB (NF-κB) p50 identifies a BCL-3-mimetic anti-inflammatory peptide. J Biol Chem. 2015;290(25):15687–96.Google Scholar
  21. 21.
    Laurent CDS, Laurent KES, Mathison RD, Befus AD. Inflammation, Immunity, and Organ System Physiology: Calcium-binding protein, spermatid-specific 1 is expressed in human salivary glands and contains an anti-inflammatory motif. Am J Physiol Regul Integr Comp Physiol. 2015;308(7):R569.Google Scholar
  22. 22.
    Cunningham TJ. Use of CHEC peptides to treat neurological and cardiovascular diseases and disorders. Google Patents; 2016.Google Scholar
  23. 23.
    Kalle M, Papareddy P, Kasetty G, van der Plas MJ, Mörgelin M, Malmsten M, et al. A peptide of heparin cofactor II inhibits endotoxin-mediated shock and invasive Pseudomonas aeruginosa infection. PLoS One. 2014;9(7):e102577.Google Scholar
  24. 24.
    Lu L, Wang YN, Li MC, Wang HB, Pu LJ, Niu WQ, et al. Reduced serum levels of vasostatin-2, an anti-inflammatory peptide derived from chromogranin A, are associated with the presence and severity of coronary artery disease. Eur Heart J. 2012;33(18):2297–306.Google Scholar
  25. 25.
    Mitić K, Stanojević S, Kuštrimović N, Vujić V, Dimitrijević M. Neuropeptide Y modulates functions of inflammatory cells in the rat: distinct role for Y1, Y2 and Y5 receptors. Peptides. 2011;32(8):1626–33.Google Scholar
  26. 26.
    Shapira E, Brodsky B, Proscura E, Nyska A, Erlanger-Rosengarten A, Wormser U. Amelioration of experimental autoimmune encephalitis by novel peptides: involvement of T regulatory cells. J Autoimmun. 2010;35(1):98–106.Google Scholar
  27. 27.
    Zheng Z, Jiang H, Huang Y, Wang J, Qiu L, Hu Z, et al. Corrigendum: Screening of an anti-inflammatory peptide from Hydrophis cyanocinctus and analysis of its activities and mechanism in DSS-induced acute colitis. Sci Rep. 2016;6:31259.Google Scholar
  28. 28.
    Baron A, Diochot S, Salinas M, Alloui A, Douguet D, Mourier G, et al. Mambalgins, snake peptides against inflammatory and neuropathic pain through inhibition of ASIC channels. Toxicon. 2018;149:93.Google Scholar
  29. 29.
    Rodriguez-Ithurralde D, Silveira R, Barbeito L, Dajas F. Fasciculin, a powerful anticholinesterase polypeptide from Dendroaspis angusticeps venom. Neurochem Int. 1983;5(3):267–74.Google Scholar
  30. 30.
    Harvey A, Robertson B. Dendrotoxins: structure-activity relationships and effects on potassium ion channels. Curr Med Chem. 2004;11(23):3065–72.Google Scholar
  31. 31.
    Zhu Q, Huang J, Wang S-z, Qin Z-h, Lin F. Cobrotoxin extracted from Naja atra venom relieves arthritis symptoms through anti-inflammation and immunosuppression effects in rat arthritis model. J Ethnopharmacol. 2016;194:1087–95.Google Scholar
  32. 32.
    Tanner MR, Tajhya RB, Huq R, Gehrmann EJ, Rodarte KE, Atik MA, et al. Prolonged immunomodulation in inflammatory arthritis using the selective Kv1. 3 channel blocker HsTX1 [R14A] and its PEGylated analog. Clin Immunol. 2017;180:45–57.Google Scholar
  33. 33.
    Hoang AN, Vo HD, Vo NP, Kudryashova KS, Nekrasova OV, Feofanov AV, et al. Vietnamese Heterometrus laoticus scorpion venom: evidence for analgesic and anti-inflammatory activity and isolation of new polypeptide toxin acting on Kv1. 3 potassium channel. Toxicon. 2014;77:40–8.Google Scholar
  34. 34.
    Xiao M, Ding L, Yang W, Chai L, Sun Y, Yang X, et al. St20, a new venomous animal derived natural peptide with immunosuppressive and anti-inflammatory activities. Toxicon. 2017;127:37–43.Google Scholar
  35. 35.
    Yin S-M, Zhao D, Yu D-Q, Li S-L, An D, Peng Y, et al. Neuroprotection by scorpion venom heat resistant peptide in 6-hydroxydopamine rat model of early-stage Parkinson’s disease. Sheng Li Xue Bao. 2014;66:658–66.Google Scholar
  36. 36.
    Wei L, Huang C, Yang H, Li M, Yang J, Qiao X, et al. A potent anti-inflammatory peptide from the salivary glands of horsefly. Parasit Vectors. 2015;8(1):556.Google Scholar
  37. 37.
    Lee G, Bae H. Anti-inflammatory applications of melittin, a major component of bee venom: Detailed mechanism of action and adverse effects. Molecules. 2016;21(5):616.Google Scholar
  38. 38.
    Yibin G, Jiang Z, Hong Z, Gengfa L, Liangxi W, Guo W, et al. A synthesized cationic tetradecapeptide from hornet venom kills bacteria and neutralizes lipopolysaccharide in vivo and in vitro. Biochem Pharmacol. 2005;70(2):209–19.Google Scholar
  39. 39.
    Wei L, Yang J, He X, Mo G, Hong J, Yan X, et al. Structure and function of a potent lipopolysaccharide-binding antimicrobial and anti-inflammatory peptide. J Med Chem. 2013;56(9):3546–56.Google Scholar
  40. 40.
    Wei L, Dong L, Zhao T, You D, Liu R, Liu H, et al. Analgesic and anti-inflammatory effects of the amphibian neurotoxin, anntoxin. Biochimie. 2011;93(6):995–1000.Google Scholar
  41. 41.
    Qian G-m, Pan G-F, Guo J-Y. Anti-inflammatory and antinociceptive effects of cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis. Nat Prod Res. 2012;26(24):2358–62.Google Scholar
  42. 42.
    Hwang J-W, Lee S-J, Kim Y-S, Kim E-K, Ahn C-B, Jeon Y-J, et al. Purification and characterization of a novel peptide with inhibitory effects on colitis induced mice by dextran sulfate sodium from enzymatic hydrolysates of Crassostrea gigas. Fish Shellfish Immunol. 2012;33(4):993–9.Google Scholar
  43. 43.
    Oishi M, Kiyono T, Sato K, Tokuhara K, Tanaka Y, Miki H, et al. pyroGlu-Leu inhibits the induction of inducible nitric oxide synthase in interleukin-1β-stimulated primary cultured rat hepatocytes. Nitric Oxide. 2015;44:81–7.Google Scholar
  44. 44.
    del Carmen Millán-Linares M, Millán F, Pedroche J, del Mar Yust M. GPETAFLR: A new anti-inflammatory peptide from Lupinus angustifolius L. protein hydrolysate. Journal of Functional Foods. 2015;18:358–67.Google Scholar
  45. 45.
    Cash JL, Bena S, Headland SE, McArthur S, Brancaleone V, Perretti M. Chemerin15 inhibits neutrophil-mediated vascular inflammation and myocardial ischemia-reperfusion injury through ChemR23. EMBO reports. 2013;14(11):999–1007.Google Scholar
  46. 46.
    Peshavariya HM, Taylor CJ, Goh C, Liu G-S, Jiang F, Chan EC, et al. Annexin peptide Ac2-26 suppresses TNFα-induced inflammatory responses via inhibition of Rac1-dependent NADPH oxidase in human endothelial cells. PLoS One. 2013;8(4):e60790.Google Scholar
  47. 47.
    Pena OM, Afacan N, Pistolic J, Chen C, Madera L, Falsafi R, et al. Synthetic cationic peptide IDR-1018 modulates human macrophage differentiation. PLoS One. 2013;8(1):e52449.Google Scholar
  48. 48.
    Lee E, Kim JK, Shin S, Jeong KW, Lee J, Lee DG, et al. Enantiomeric 9-mer peptide analogs of protaetiamycine with bacterial cell selectivities and anti-inflammatory activities. J Pept Sci. 2011;17(10):675–82.Google Scholar
  49. 49.
    Ruchala P, Navab M, Jung C-L, Hama-Levy S, Micewicz ED, Luong H, et al. Oxpholipin 11D: an anti-inflammatory peptide that binds cholesterol and oxidized phospholipids. PLoS One. 2010;5(4):e10181.Google Scholar
  50. 50.
    Mathison R, Lo P, Moore G, Scott B, Davison JS. Attenuation of intestinal and cardiovascular anaphylaxis by the salivary gland tripeptide FEG and its D-isomeric analog feG. Peptides. 1998;19(6):1037–42.Google Scholar
  51. 51.
    Travis S, Yap LM, Hawkey C, Warren B, Lazarov M, Fong T, et al. RDP58 is a novel and potentially effective oral therapy for ulcerative colitis. Inflamm Bowel Dis. 2005;11(8):713–9.Google Scholar
  52. 52.
    Wang J, Liu Y-M, Cao W, Yao K-W, Liu Z-Q, Guo J-Y. Anti-inflammation and antioxidant effect of Cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis, in middle cerebral artery occlusion-induced focal cerebral ischemia in rats. Metab Brain Dis. 2012;27(2):159–65.Google Scholar
  53. 53.
    Noh HJ, Hwang D, Lee ES, Hyun JW, Yi PH, Kim GS, et al. Anti-inflammatory activity of a new cyclic peptide, citrusin XI, isolated from the fruits of Citrus unshiu. J Ethnopharmacol. 2015;163:106–12.Google Scholar
  54. 54.
    Wu P, Wu M, Xu L, Xie H, Wei X. Anti-inflammatory cyclopeptides from exocarps of sugar-apples. Food Chem. 2014;152:23–8.Google Scholar
  55. 55.
    Hernández-Ledesma B, Hsieh C-C, Ben O. Antioxidant and anti-inflammatory properties of cancer preventive peptide lunasin in RAW 264.7 macrophages. Biochem Biophys Res Commun. 2009;390(3):803–8.Google Scholar
  56. 56.
    de Mejia EG, Dia VP. Lunasin and lunasin-like peptides inhibit inflammation through suppression of NF-κB pathway in the macrophage. Peptides. 2009;30(12):2388–98.Google Scholar
  57. 57.
    Yang X, Zhu J, Tung C-Y, Gardiner G, Wang Q, Chang H-C, et al. Lunasin alleviates allergic airway inflammation while increases antigen-specific Tregs. PLoS One. 2015;10(2):e0115330.Google Scholar
  58. 58.
    Lin Q, Liao W, Bai J, Wu W, Wu J. Soy protein-derived ACE-inhibitory peptide LSW (Leu-Ser-Trp) shows anti-inflammatory activity on vascular smooth muscle cells. J Funct Foods. 2017;34:248–53.Google Scholar
  59. 59.
    Cam A, de Mejia EG. Role of dietary proteins and peptides in cardiovascular disease. Mol Nutr Food Res. 2012;56(1):53–66.Google Scholar
  60. 60.
    Marcone S, Belton O, Fitzgerald DJ. Milk-derived bioactive peptides and their health promoting effects: a potential role in atherosclerosis. Br J Clin Pharmacol. 2017;83(1):152–62.Google Scholar
  61. 61.
    Bamdad F, Shin SH, Suh J-W, Nimalaratne C, Sunwoo H. Anti-Inflammatory and antioxidant properties of casein hydrolysate produced using high hydrostatic pressure combined with proteolytic enzymes. Molecules. 2017;22(4):609.Google Scholar
  62. 62.
    Altmann K, Wutkowski A, Klempt M, Clawin-Rädecker I, Meisel H, Lorenzen PC. Generation and identification of anti-inflammatory peptides from bovine β-casein using enzyme preparations from cod and hog. J Sci Food Agric. 2016;96(3):868–77.Google Scholar
  63. 63.
    Mukhopadhya A, Noronha N, Bahar B, Ryan MT, Murray BA, Kelly PM, et al. Anti-inflammatory effects of a casein hydrolysate and its peptide-enriched fractions on TNFα-challenged Caco-2 cells and LPS-challenged porcine colonic explants. Food Sci Nutr. 2014;2(6):712–23.Google Scholar
  64. 64.
    Nielsen DSG, Theil PK, Larsen LB, Purup S. Effect of milk hydrolysates on inflammation markers and drug-induced transcriptional alterations in cell-based models. J Anim Sci. 2012;90(suppl_4):403–5.Google Scholar
  65. 65.
    Hirota T, Nonaka A, Matsushita A, Uchida N, Ohki K, Asakura M, et al. Milk casein-derived tripeptides, VPP and IPP induced NO production in cultured endothelial cells and endothelium-dependent relaxation of isolated aortic rings. Heart Vessels. 2011;26(5):549–56.Google Scholar
  66. 66.
    Aihara K, Ishii H, Yoshida M. Casein-derived tripeptide, Val-Pro-Pro (VPP), modulates monocyte adhesion to vascular endothelium. J Atheroscler Thromb. 2009;16(5):594–603.Google Scholar
  67. 67.
    Huang W, Chakrabarti S, Majumder K, Jiang Y, Davidge ST, Wu J. Egg-derived peptide IRW inhibits TNF-α-induced inflammatory response and oxidative stress in endothelial cells. J Agric Food Chem. 2010;58(20):10840–6.Google Scholar
  68. 68.
    Majumder K, Chakrabarti S, Davidge ST, Wu J. Structure and activity study of egg protein ovotransferrin derived peptides (IRW and IQW) on endothelial inflammatory response and oxidative stress. J Agric Food Chem. 2013;61(9):2120–9.Google Scholar
  69. 69.
    Huang W-Y, Majumder K, Wu J. Oxygen radical absorbance capacity of peptides from egg white protein ovotransferrin and their interaction with phytochemicals. Food Chem. 2010;123(3):635–41.Google Scholar
  70. 70.
    Huang W, Shen S, Nimalaratne C, Li S, Majumder K, Wu J. Effects of addition of egg ovotransferrin-derived peptides on the oxygen radical absorbance capacity of different teas. Food Chem. 2012;135(3):1600–7.Google Scholar
  71. 71.
    Bjørndal B, Berge C, Ramsvik MS, Svardal A, Bohov P, Skorve J, et al. A fish protein hydrolysate alters fatty acid composition in liver and adipose tissue and increases plasma carnitine levels in a mouse model of chronic inflammation. Lipids Health Dis. 2013;12(1):143.Google Scholar
  72. 72.
    Zhao L, Wang X, Zhang X-L, Xie Q-F. Purification and identification of anti-inflammatory peptides derived from simulated gastrointestinal digests of velvet antler protein (Cervus elaphus Linnaeus). J Food Drug Anal. 2016;24(2):376–84.Google Scholar
  73. 73.
    Suh J-S, Eun J-S, So J-N, SEO J-T. JHON G-J. Phagocytic activity of ethyl alcohol fraction of deer antler in murine peritoneal macrophage. Biol Pharm Bull. 1999;22(9):932–5.Google Scholar
  74. 74.
    Zha E, Li X, Li D, Guo X, Gao S, Yue X. Immunomodulatory effects of a 3.2 kDa polypeptide from velvet antler of Cervus nippon Temminck. Int Immunopharmacol. 2013;16(2):210–3.Google Scholar
  75. 75.
    Kim K-H, Kim K-S, Choi B-J, Chung K-H, Chang Y-C, Lee S-D, et al. Anti-bone resorption activity of deer antler aqua-acupunture, the pilose antler of Cervus korean TEMMINCK var. mantchuricus Swinhoe (Nokyong) in adjuvant-induced arthritic rats. J Ethnopharmacol. 2005;96(3):497–506.Google Scholar
  76. 76.
    Zhao L, Bao-Ping J, Li B, Zhou F, Li J-H, Luo Y-C. Immunomodulatory effects of aqueous extract of velvet antler (Cervus elaphus Linnaeus) and its simulated gastrointestinal digests on immune cells in vitro. J Food Drug Anal. 2009;17(4).Google Scholar
  77. 77.
    Kuo C-Y, Cheng Y-T, Ho S-T, Yu C-C, Chen M-J. Comparison of anti-inflammatory effect and protein profile between the water extracts from Formosan sambar deer and red deer. J Food Drug Anal. 2018;26(4):1275–82.Google Scholar
  78. 78.
    Li-Chan EC. Bioactive peptides and protein hydrolysates: research trends and challenges for application as nutraceuticals and functional food ingredients. Curr Opin Food Sci. 2015;1:28–37.Google Scholar
  79. 79.
    Kim J, Kim S-K. Bioactive peptides from marine sources as potential anti-inflammatory therapeutics. Curr Protein Pept. 2013;14(3):177–82.Google Scholar
  80. 80.
    Renner MK, Shen Y-C, Cheng X-C, Jensen PR, Frankmoelle W, Kauffman CA, et al. Cyclomarins A–C, new antiinflammatory cyclic peptides produced by a marine bacterium (Streptomyces sp.). J Am Chem Soc. 1999;121(49):11273–6.Google Scholar
  81. 81.
    Barbie P, Kazmaier U. Total synthesis of cyclomarin A, a marine cycloheptapeptide with anti-tuberculosis and anti-malaria activity. Organic letters. 2015;18(2):204–7.Google Scholar
  82. 82.
    Jacobson PB, Jacobs RS. Fuscoside: an anti-inflammatory marine natural product which selectively inhibits 5-lipoxygenase. Part I: physiological and biochemical studies in murine inflammatory models. J Pharmacol Exp Ther. 1992;262(2):866–73.Google Scholar
  83. 83.
    Randazzo A, Bifulco G, Giannini C, Bucci M, Debitus C, Cirino G, et al. Halipeptins A and B: two novel potent anti-inflammatory cyclic depsipeptides from the Vanuatu marine sponge Haliclona species. J Am Chem Soc. 2001;123(44):10870–6.Google Scholar
  84. 84.
    Ahn C-B, Je J-Y, Cho Y-S. Antioxidant and anti-inflammatory peptide fraction from salmon byproduct protein hydrolysates by peptic hydrolysis. Food Res Int. 2012;49(1):92–8.Google Scholar
  85. 85.
    Ahn C-B, Cho Y-S, Je J-Y. Purification and anti-inflammatory action of tripeptide from salmon pectoral fin byproduct protein hydrolysate. Food Chem. 2015;168:151–6.Google Scholar
  86. 86.
    Zhang L-H, Longley RE, Koehn FE. Antiproliferative and immunosuppressive properties of microcolin A, a marine-derived lipopeptide. Life Sci. 1997;60(10):751–62.Google Scholar
  87. 87.
    Malmberg AB, Gilbert H, McCabe RT, Basbaum AI. Powerful antinociceptive effects of the cone snail venom-derived subtype-selective NMDA receptor antagonists conantokins G and T. Pain. 2003;101(1–2):109–16.Google Scholar
  88. 88.
    Sandall D, Satkunanathan N, Keays D, Polidano M, Liping X, Pham V, et al. A novel α-conotoxin identified by gene sequencing is active in suppressing the vascular response to selective stimulation of sensory nerves in vivo. Biochemistry. 2003;42(22):6904–11.Google Scholar
  89. 89.
    McGivern JG. Ziconotide: a review of its pharmacology and use in the treatment of pain. Neuropsychiatr Dis Treat. 2007;3(1):69.Google Scholar
  90. 90.
    Tan LT, Williamson RT, Gerwick WH, Watts KS, McGough K, Jacobs R. cis, cis-and trans, trans-Ceratospongamide, new bioactive cyclic heptapeptides from the Indonesian red alga ceratodictyon s pongiosum and symbiotic sponge sigmadocia s ymbiotica. J Organic Chem. 2000;65(2):419–25.Google Scholar
  91. 91.
    Cheung RCF, Ng TB, Wong JH. Marine peptides: Bioactivities and applications. Mar Drugs. 2015;13(7):4006–43.Google Scholar
  92. 92.
    Billingham M, Morley J, HANSON JM, Shipolini R, Vernon C. An anti-inflammatory peptide from bee venom. Nature. 1973;245(5421):163.Google Scholar
  93. 93.
    Eiseman JL, Von Bredow J, Alvares AP. Effect of honeybee (Apis mellifera) venom on the course of adjuvant-induced arthritis and depression of drug metabolism in the rat. Biochem Pharmacol. 1982;31(6):1139–46.Google Scholar
  94. 94.
    Kwon YB, Lee HJ, Han HJ, Mar WC, Kang SK, Yoon OB, et al. The water-soluble fraction of bee venom produces antinociceptive and anti-inflammatory effects on rheumatoid arthritis in rats. Life Sci. 2002;71(2):191–204.Google Scholar
  95. 95.
    Kwon YB, Lee HJ, Han HJ, Mar WC, Lee H-J, Yang I-S et al. Bee venom pretreatment has both an antinociceptive and anti-inflammatory effect on carrageenan-induced inflammation. J Vet Med Sci. 2001;63(3):251–9.Google Scholar
  96. 96.
    Kwon YB, Kim HW, Ham TW, Yoon SY, Roh DH, Han HJ, et al. The anti-inflammatory effect of bee venom stimulation in a mouse air pouch model is mediated by adrenal medullary activity. J Neuroendocrinol. 2003;15(1):93–6.Google Scholar
  97. 97.
    Lee J-D, Kim S-Y, Kim T-W, Lee S-H, Yang H-I, Lee D-I, et al. Anti-inflammatory effect of bee venom on type II collagen-induced arthritis. Am J Chin Med. 2004;32(03):361–7.Google Scholar
  98. 98.
    Sobral F, Sampaio A, Falcão S, Queiroz MJR, Calhelha RC, Vilas-Boas M, et al. Chemical characterization, antioxidant, anti-inflammatory and cytotoxic properties of bee venom collected in Northeast Portugal. Food Chem Toxicol. 2016;94:172–7.Google Scholar
  99. 99.
    Kim W-H, An H-J, Kim J-Y, Gwon M-G, Gu H, Park J-B, et al. Bee venom inhibits porphyromonas gingivalis lipopolysaccharides-induced pro-inflammatory cytokines through suppression of NF-κB and AP-1 signaling pathways. Molecules. 2016;21(11):1508.Google Scholar
  100. 100.
    Chung H-J, Lee J, Shin J-S, Kim M-r, Koh W, Kim M-J, et al. In vitro and in vivo anti-allergic and anti-inflammatory effects of eBV, a newly developed derivative of bee venom, through modulation of IRF3 signaling pathway in a carrageenan-induced edema model. PLoS One. 2016;11(12):e0168120.Google Scholar
  101. 101.
    Im EJ, Kim SJ, Hong SB, Park J-K, Rhee MH. Anti-inflammatory activity of bee venom in BV2 microglial cells: mediation of MyD88-dependent NF-κB signaling pathway. Evid Based Complement Alternat Med. 2016;2016.Google Scholar
  102. 102.
    Cai M, Lee JH, Yang EJ. Bee venom ameliorates cognitive dysfunction caused by neuroinflammation in an animal model of vascular dementia. Mol Neurobiol. 2017;54(8):5952–60.Google Scholar
  103. 103.
    Moreno M, Giralt E. Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: melittin, apamin and mastoparan. Toxins (Basel). 2015;7(4):1126–50.Google Scholar
  104. 104.
    Wan T, Li L, Zhu Z, Liu S, Zhao Y, Yu M. Scorpion venom active polypeptide may be a new external drug of diabetic ulcer. Evid Based Complement Alternat Med. 2017.Google Scholar
  105. 105.
    Zhu L, Yang X-P, Janic B, Rhaleb N-E, Harding P, Nakagawa P, et al. Ac-SDKP suppresses TNF-α-induced ICAM-1 expression in endothelial cells via inhibition of IκB kinase and NF-κB activation. Am J Physiol Heart Circ Physiol. 2016;310(9):H1176-H83.Google Scholar
  106. 106.
    Ruan Y, Yao L, Zhang B, Zhang S, Guo J. Anti-inflammatory effects of Neurotoxin-Nna, a peptide separated from the venom of Naja naja atra. BMC Complement Altern Med. 2013;13(1):86.Google Scholar
  107. 107.
    Wang N, Huang Y, Li A, Jiang H, Wang J, Li J, et al. Hydrostatin-TL1, an anti-inflammatory active peptide from the venom gland of Hydrophis cyanocinctus in the South China Sea. Int J Mol Sci. 2016;17(11):1940.Google Scholar
  108. 108.
    Brook M, Tomlinson GH, Miles K, Smith RW, Rossi AG, Hiemstra PS, et al. Neutrophil-derived alpha defensins control inflammation by inhibiting macrophage mRNA translation. Proc Natl Acad Sci. 2016;113(16):4350–5.Google Scholar
  109. 109.
    Perretti M, Dalli J. Exploiting the Annexin A1 pathway for the development of novel anti-inflammatory therapeutics. Br J Pharmacol. 2009;158(4):936–46.Google Scholar
  110. 110.
    Gerke V, Creutz CE, Moss SE. Annexins: linking Ca 2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol. 2005;6(6):449.Google Scholar
  111. 111.
    Oliani SM, Damazo AS, Perretti M. Annexin 1 localisation in tissue eosinophils as detected by electron microscopy. Mediators Inflamm. 2002;11(5):287–92.Google Scholar
  112. 112.
    Perretti M, Gavins FN. Annexin 1: an endogenous anti-inflammatory protein. Physiology. 2003;18(2):60–4.Google Scholar
  113. 113.
    Perretti M, Di Filippo C, D’Amico M, Dalli J. Characterizing the anti-inflammatory and tissue protective actions of a novel Annexin A1 peptide. PLoS One. 2017;12(4):e0175786.Google Scholar
  114. 114.
    Sugimoto MA, Vago JP, Teixeira MM, Sousa LP. Annexin A1 and the resolution of inflammation: modulation of neutrophil recruitment, apoptosis, and clearance. J Immunol Res. 2016;2016.Google Scholar
  115. 115.
    Vago JP, Nogueira CR, Tavares LP, Soriani FM, Lopes F, Russo RC, et al. Annexin A1 modulates natural and glucocorticoid-induced resolution of inflammation by enhancing neutrophil apoptosis. J Leukoc Biol. 2012;92(2):249–58.Google Scholar
  116. 116.
    McArthur S, Gobbetti T, Kusters DH, Reutelingsperger CP, Flower RJ, Perretti M. Definition of a novel pathway centered on lysophosphatidic acid to recruit monocytes during the resolution phase of tissue inflammation. J Immunol. 2015:1500733.Google Scholar
  117. 117.
    Maderna P, Yona S, Perretti M, Godson C. Modulation of phagocytosis of apoptotic neutrophils by supernatant from dexamethasone-treated macrophages and annexin-derived peptide Ac2–26. The J Immunol. 2005;174(6):3727–33.Google Scholar
  118. 118.
    Yona S, Heinsbroek SE, Peiser L, Gordon S, Perretti M, Flower RJ. Impaired phagocytic mechanism in annexin 1 null macrophages. Br J Pharmacol. 2006;148(4):469–77.Google Scholar
  119. 119.
    Lim LH, Pervaiz S. Annexin 1: the new face of an old molecule. FASEB J. 2007;21(4):968–75.Google Scholar
  120. 120.
    Williams SL, Milne IR, Bagley CJ, Gamble JR, Vadas MA, Pitson SM, et al. A proinflammatory role for proteolytically cleaved annexin A1 in neutrophil transendothelial migration. J Immunol. 2010;185(5):3057–63.Google Scholar
  121. 121.
    Bizzarro V, Petrella A, Parente L. Annexin A1: novel roles in skeletal muscle biology. J Cell Physiol. 2012;227(8):3007–15.Google Scholar
  122. 122.
    Gavins FNE, Hickey MJ. Annexin A1 and the regulation of innate and adaptive immunity. Front Immunol. 2012;3:354.Google Scholar
  123. 123.
    Li Y, Cai L, Wang H, Wu P, Gu W, Chen Y, et al. Pleiotropic regulation of macrophage polarization and tumorigenesis by formyl peptide receptor-2. Oncogene. 2011;30(36):3887.Google Scholar
  124. 124.
    Cooray SN, Gobbetti T, Montero-Melendez T, McArthur S, Thompson D, Clark AJ, et al. Ligand-specific conformational change of the G-protein-coupled receptor ALX/FPR2 determines proresolving functional responses. Proc Natl Acad Sci. 2013:201308253.Google Scholar
  125. 125.
    Ferlazzo V, D’agostino P, Milano S, Caruso R, Feo S, Cillari E, et al. Anti-inflammatory effects of annexin-1: stimulation of IL-10 release and inhibition of nitric oxide synthesis. Int Immunopharmacol. 2003;3(10–11):1363–9.Google Scholar
  126. 126.
    D’acquisto F, Perretti M, Flower R. Annexin-A1: a pivotal regulator of the innate and adaptive immune systems. Br J Pharmacol. 2008;155(2):152–69.Google Scholar
  127. 127.
    Gavins FN, Yona S, Kamal AM, Flower RJ, Perretti M. Leukocyte antiadhesive actions of annexin 1: ALXR-and FPR-related anti-inflammatory mechanisms. Blood. 2003;101(10):4140–7.Google Scholar
  128. 128.
    Yazid S, Gardner PJ, Carvalho L, Chu CJ, Flower RJ, Solito E, et al. Annexin-A1 restricts Th17 cells and attenuates the severity of autoimmune disease. J Autoimmun. 2015;58:1–11.Google Scholar
  129. 129.
    Purvis GS, Chiazza F, Chen J, Azevedo-Loiola R, Martin L, Kusters DH, et al. Annexin A1 attenuates microvascular complications through restoration of Akt signalling in a murine model of type 1 diabetes. Diabetologia. 2018;61(2):482–95.Google Scholar
  130. 130.
    Pietrani NT, Ferreira CN, Rodrigues KF, Perucci LO, Carneiro FS, Bosco AA, et al. Proresolving protein Annexin A1: the role in type 2 diabetes mellitus and obesity. Biomed Pharmacother. 2018;103:482–9.Google Scholar
  131. 131.
    Perucci LO, Carneiro FS, Ferreira CN, Sugimoto MA, Soriani FM, Martins GG, et al. Annexin A1 is increased in the plasma of preeclamptic women. PLoS One. 2015;10(9):e0138475.Google Scholar
  132. 132.
    Sena A, Grishina I, Thai A, Goulart L, Macal M, Fenton A, et al. Dysregulation of anti-inflammatory annexin A1 expression in progressive Crohns disease. PLoS One. 2013;8(10):e76969.Google Scholar
  133. 133.
    Pan B, Kong J, Jin J, Kong J, He Y, Dong S, et al. A novel anti-inflammatory mechanism of high density lipoprotein through up-regulating annexin A1 in vascular endothelial cells. Biochim Biophys Acta Mol Cell Biol Lipids. 2016;1861(6):501–12.Google Scholar
  134. 134.
    de Paula-Silva M, Barrios BE, Macció-Maretto L, Sena AA, Farsky SHP, Correa SG, et al. Role of the protein annexin A1 on the efficacy of anti-TNF treatment in a murine model of acute colitis. Biochem Pharmacol. 2016;115:104–13.Google Scholar
  135. 135.
    Hiramoto H, Dansako H, Takeda M, Satoh S, Wakita T, Ikeda M, et al. Annexin A1 negatively regulates viral RNA replication of hepatitis C virus. Acta Med Okayama. 2015;69(2):71–8.Google Scholar
  136. 136.
    Wang L, Bi J, Yao C, Xu X, Li X, Wang S, et al. Annexin A1 expression and its prognostic significance in human breast cancer. Neoplasma. 2010;57(3):253–9.Google Scholar
  137. 137.
    Hsiang CH, Tunoda T, Whang YE, Tyson DR, Ornstein DK. The impact of altered annexin I protein levels on apoptosis and signal transduction pathways in prostate cancer cells. Prostate. 2006;66(13):1413–24.Google Scholar
  138. 138.
    Guo C, Liu S, Sun M-Z. Potential role of Anxa1 in cancer. Future oncology. 2013;9(11):1773–93.Google Scholar
  139. 139.
    Zwirzitz A, Reiter M, Skrabana R, Ohradanova-Repic A, Majdic O, Gutekova M, et al. Lactoferrin is a natural inhibitor of plasminogen activation. J Biol Chem. 2018:jbc-RA118.Google Scholar
  140. 140.
    Puddu P, Valenti P, Gessani S. Immunomodulatory effects of lactoferrin on antigen presenting cells. Biochimie. 2009;91(1):11–8.Google Scholar
  141. 141.
    Valenti P, Rosa L, Capobianco D, Lepanto MS, Schiavi E, Cutone A, et al. Role of Lactobacilli and Lactoferrin in the Mucosal Cervicovaginal Defense. Front Immunol. 2018;9:376.Google Scholar
  142. 142.
    Suzuki YA, Lönnerdal B. Characterization of mammalian receptors for lactoferrin. Biochem Cell Biol. 2002;80(1):75–80.Google Scholar
  143. 143.
    Gifford JL, Hunter HN, Vogel H. Lactoferricin Cell Mol Life Sci. 2005;62(22):2588.Google Scholar
  144. 144.
    Bellamy W, Takase M, Yamauchi K, Wakabayashi H, Kawase K, Tomita M. Identification of the bactericidal domain of lactoferrin. Biochim Biophys Acta Protein Struct Mol Enzymol. 1992;1121(1–2):130–6.Google Scholar
  145. 145.
    Håversen L, Baltzer L, Dolphin G, Hanson L, Mattsby-Baltzer I. Anti-Inflammatory Activities of Human Lactoferrin in Acute Dextran Sulphate-Induced Colitis in Mice. Scand J Immunol. 2003;57(1):2–10.Google Scholar
  146. 146.
    Sudheendra U, Dhople V, Datta A, Kar RK, Shelburne CE, Bhunia A, et al. Membrane disruptive antimicrobial activities of human β-defensin-3 analogs. Eur J Med Chem. 2015;91:91–9.Google Scholar
  147. 147.
    Semple F, Webb S, Li HN, Patel HB, Perretti M, Jackson IJ, et al. Human β-defensin 3 has immunosuppressive activity in vitro and in vivo. Eur J Immunol. 2010;40(4):1073–8.Google Scholar
  148. 148.
    Nguyen TX, Cole AM, Lehrer RI. Evolution of primate θ-defensins: a serpentine path to a sweet tooth. Peptides. 2003;24(11):1647–54.Google Scholar
  149. 149.
    Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol. 2003;3(9):710.Google Scholar
  150. 150.
    Kohlgraf KG, Pingel LC, Dietrich DE, Brogden KA. Defensins as anti-inflammatory compounds and mucosal adjuvants. Future Microbiol. 2010;5(1):99–113.Google Scholar
  151. 151.
    Shi J, Aono S, Lu W, Ouellette AJ, Hu X, Ji Y, et al. A novel role for defensins in intestinal homeostasis: regulation of IL-1β secretion. J Immunol. 2007;179(2):1245–53.Google Scholar
  152. 152.
    Semple F, Dorin JR. β-Defensins: multifunctional modulators of infection, inflammation and more? J Innate Immun. 2012;4(4):337–48.Google Scholar
  153. 153.
    Sørensen OE, Thapa DR, Rosenthal A, Liu L, Roberts AA, Ganz T. Differential regulation of β-defensin expression in human skin by microbial stimuli. J Immunol. 2005;174(8):4870–9.Google Scholar
  154. 154.
    Ryan LK, Dai J, Yin Z, Megjugorac N, Uhlhorn V, Yim S, et al. Modulation of human β-defensin-1 (hBD-1) in plasmacytoid dendritic cells (PDC), monocytes, and epithelial cells by influenza virus, Herpes simplex virus, and Sendai virus and its possible role in innate immunity. J Leukoc Biol. 2011;90(2):343–56.Google Scholar
  155. 155.
    Liu AY, Destoumieux D, Wong AV, Park CH, Valore EV, Liu L, et al. Human β-defensin-2 production in keratinocytes is regulated by interleukin-1, bacteria, and the state of differentiation. J Invest Dermatol. 2002;118(2):275–81.Google Scholar
  156. 156.
    Chadebech P, Goidin D, Jacquet C, Viac J, Schmitt D, Staquet M. Use of human reconstructed epidermis to analyze the regulation of β-defensin hBD-1, hBD-2, and hBD-3 expression in response to LPS. Cell Biol Toxicol. 2003;19(5):313–24.Google Scholar
  157. 157.
    Krisanaprakornkit S, Kimball JR, Dale BA. Regulation of human β-defensin-2 in gingival epithelial cells: the involvement of mitogen-activated protein kinase pathways, but not the NF-κB transcription factor family. J Immunol. 2002;168(1):316–24.Google Scholar
  158. 158.
    Dunsche A, Açil Y, Dommisch H, Siebert R, Schröder JM, Jepsen S. The novel human beta-defensin-3 is widely expressed in oral tissues. Eur J Oral Sci. 2002;110(2):121–4.Google Scholar
  159. 159.
    Fruitwala S, El-Naccache DW, Chang TL. Multifaceted immune functions of human defensins and underlying mechanisms. Seminars in cell & developmental biology; 2018: Elsevier.Google Scholar
  160. 160.
    Funderburg N, Lederman MM, Feng Z, Drage MG, Jadlowsky J, Harding CV, et al. Human β-defensin-3 activates professional antigen-presenting cells via Toll-like receptors 1 and 2. Proc Natl Acad Sci. 2007;104(47):18631–5.Google Scholar
  161. 161.
    Niyonsaba F, Ushio H, Hara M, Yokoi H, Tominaga M, Takamori K, et al. Antimicrobial peptides human β-defensins and cathelicidin LL-37 induce the secretion of a pruritogenic cytokine IL-31 by human mast cells. J Immunol. 2010;184(7):3526–34.Google Scholar
  162. 162.
    Catania A, Lonati C, Sordi A, Carlin A, Leonardi P, Gatti S. The melanocortin system in control of inflammation. Sci World J. 2010;10:1840–53.Google Scholar
  163. 163.
    Catania A, Gatti S, Colombo G, Lipton JM. Targeting melanocortin receptors as a novel strategy to control inflammation. Pharmacol Rev. 2004;56(1):1–29.Google Scholar
  164. 164.
    Capsoni F, Ongari A, Colombo G, Turcatti F, Catania A. The synthetic melanocortin (CKPV) 2 exerts broad anti-inflammatory effects in human neutrophils. Peptides. 2007;28(10):2016–22.Google Scholar
  165. 165.
    Zouki C, Ouellet S, Filep JG. The anti-inflammatory peptides, antiflammins, regulate the expression of adhesion molecules on human leukocytes and prevent neutrophil adhesion to endothelial cells. FASEB J. 2000;14(3):572–80.Google Scholar
  166. 166.
    Lloret S, Moreno J. In vitro and in vivo effects of the anti-inflammatory peptides, antiflammins. Biochem Pharmacol. 1992;44(7):1437–41.Google Scholar
  167. 167.
    Camussi G, Tetta C, Bussolino F, Baglioni C. Antiinflammatory peptides (antiflammins) inhibit synthesis of platelet-activating factor, neutrophil aggregation and chemotaxis, and intradermal inflammatory reactions. J Exp Med. 1990;171(3):913–27.Google Scholar
  168. 168.
    Kumar N, Nakagawa P, Janic B, Romero CA, Worou ME, Monu SR, et al. The anti-inflammatory peptide Ac-SDKP is released from thymosin-β4 by renal meprin-α and prolyl oligopeptidase. Am J Physiol Renal Physiol. 2016;310(10):F1026-F34.Google Scholar
  169. 169.
    Peng H, Carretero OA, Brigstock DR, Oja-Tebbe N, Rhaleb N-E. Ac-SDKP reverses cardiac fibrosis in rats with renovascular hypertension. Hypertension. 2003;42(6):1164–70.Google Scholar
  170. 170.
    Rhaleb N-E, Pokharel S, Sharma U, Carretero OA. Renal protective effects of N-acetyl-Ser-Asp-Lys-Pro in DOCA-salt hypertensive mice. J Hypertens. 2011;29(2):330.Google Scholar
  171. 171.
    Nakagawa P, Masjoan-Juncos JX, Basha H, Janic B, Worou ME, Liao TD, et al. Effects of N-acetyl-seryl-asparyl-lysyl-proline on blood pressure, renal damage, and mortality in systemic lupus erythematosus. Physiol Rep. 2017;5(2).Google Scholar
  172. 172.
    Douglas RG, Ehlers MR, Sturrock ED. Antifibrotic peptide N-acetyl-Ser-Asp-Lys-Pro (Ac-SDKP): opportunities for angiotensin-converting enzyme inhibitor design. Clin Exp Pharmacol Physiol. 2013;40(8):535–41.Google Scholar
  173. 173.
    Dellai A, Maricic I, Kumar V, Arutyunyan S, Bouraoui A, Nefzi A. Parallel synthesis and anti-inflammatory activity of cyclic peptides cyclosquamosin D and Met-cherimolacyclopeptide B and their analogs. Bioorg Med Chem Lett. 2010;20(19):5653–7.Google Scholar
  174. 174.
    Wen S-J, Hu T-S, Yao Z-J. Macrocyclization studies and total synthesis of cyclomarin C, an anti-inflammatory marine cyclopeptide. Tetrahedron. 2005;61(21):4931–8.Google Scholar
  175. 175.
    Festa C, De Marino S, Sepe V, Monti MC, Luciano P, D’Auria MV, et al. Perthamides C and D, two new potent anti-inflammatory cyclopeptides from a solomon lithistid sponge theonella swinhoei. Tetrahedron. 2009;65(50):10424–9.Google Scholar
  176. 176.
    Bucci M, Cantalupo A, Vellecco V, Panza E, Monti MC, Zampella A, et al. Perthamide C inhibits eNOS and iNOS expression and has immunomodulating activity in vivo. PLoS One. 2013;8(3):e57801.Google Scholar
  177. 177.
    Chuang P-H, Hsieh P-W, Yang Y-L, Hua K-F, Chang F-R, Shiea J, et al. Cyclopeptides with anti-inflammatory activity from seeds of Annona montana. J Nat Prod. 2008;71(8):1365–70.Google Scholar
  178. 178.
    Afacan J, TY Yeung N, Pena AM, EW Hancock O. R. Therapeutic potential of host defense peptides in antibiotic-resistant infections. Curr Pharm Des. 2012;18(6):807–19.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Maryam Dadar
    • 1
    Email author
  • Youcef Shahali
    • 1
  • Sandip Chakraborty
    • 2
  • Minakshi Prasad
    • 3
  • Fatemeh Tahoori
    • 1
  • Ruchi Tiwari
    • 4
  • Kuldeep Dhama
    • 5
  1. 1.Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO)KarajIran
  2. 2.Department of Veterinary MicrobiologyCollege of Veterinary Sciences and Animal HusbandryWest TripuraIndia
  3. 3.Department of Animal BiotechnologyLLR University of Veterinary and Animal SciencesHisarIndia
  4. 4.Department of Veterinary Microbiology and Immunology, College of Veterinary SciencesUP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan SansthanMathuraIndia
  5. 5.Division of PathologyICAR-Indian Veterinary Research InstituteBareillyIndia

Personalised recommendations