Inflammation Research

, Volume 68, Issue 2, pp 103–116 | Cite as

Carcinogenesis: the cancer cell–mast cell connection

  • Maria-Angeles AllerEmail author
  • Ana Arias
  • Jose-Ignacio Arias
  • Jaime Arias



In mammals, inflammation is required for wound repair and tumorigenesis. However, the events that lead to inflammation, particularly in non-healing wounds and cancer, are only partly understood.


Mast cells, due to their great plasticity, could orchestrate the inflammatory responses inducing the expression of extraembryonic programs of normal and pathological tissue formation. This heterogeneity of mast cells could allow a microenvironment to be recreated similar to the extraembryonic structures, i.e., amnion and yolk sac, which are needed for embryonic development. Mast cells could provide a framework for understanding the connection between inflammation and tumor growth, invasion and metastasis. In this way, the mast cells could express inflammatory phenotypes, which would enable the cancer stem cells to develop. Thus, the cancer cell uses mast cells to express the extraembryonic functions that are needed to allow the cancer stem cell to proliferate and invade. If so, then by using this appropriate inflammatory interstitial microenvironment, a cancer stem cell can reach maximum levels of growth and invasion inside the host.


Therefore, the comparison of tumors with wounds that do not heal would be supported since both pathological processes use extraembryonic mechanisms by mast cells. The adoption of these mechanisms warrants tumor survival in an embryonic-like state.


Amniotic Cancer Chronic inflammation Ischemia–reperfusion Mast cell Vitelline 



Adrenocorticotrophic hormone


Epithelial–mesenchymal transition


Fibroblast growth factor


Hypoxia-inducible transcription factor


Monocyte chemoattractant protein


Mesenchymal to epithelial transition


Macrophage inflammatory protein one


Platelet-derived growth factor




Prolyl hydrolase

Treg cells

Regulatory T cells


Stem cell factor


Toll-like receptors


Transforming growth factor beta


Tumor necrosis factor-alpha


Vascular endothelial growth factor



The authors are indebted to Maria Elena Vicente for preparing the manuscript and Elisabeth Mascola for translating it into English. No sources of funding were used for making this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol. 2007;127:514–25.Google Scholar
  2. 2.
    Candido J, Hagemann T. Cancer-related inflammation. J Clin Immunol. 2013;33(Suppl 1):79–4.Google Scholar
  3. 3.
    Kluwe J, Mencin A, Schwabe RF. Toll-like receptors, wound healing and carcinogenesis. J Mol Med (Berl). 2009;87:125–38.Google Scholar
  4. 4.
    Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454:428–35.Google Scholar
  5. 5.
    Aller MA, Arias JL, Arias J. Pathological axes of wound repair: Gastrulation revisited. Theor Biol Med Model. 2010;7:37.Google Scholar
  6. 6.
    Arias JI, Arias JL, Arias J. The use of inflammation by tumor cells. Cancer. 2005;104:223–8.Google Scholar
  7. 7.
    Arias JI, Aller MA, Arias J. Cancer cell: using inflammation to invade the host. Mol Cancer. 2007;6:29.Google Scholar
  8. 8.
    Mantovani A, Allavena Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–44.Google Scholar
  9. 9.
    Rakoff-Nahoum S. Why cancer and inflammation? Yale J Biol Med. 2006;79:123–30.Google Scholar
  10. 10.
    Solinas G, Marchesi F, Garlanda C, Mantovani A, Allavena P. Inflammation-mediated promotion of invasion and metastasis. Cancer Metastasis Rev. 2010;29:243–8.Google Scholar
  11. 11.
    Kischer CW, Bunce H, Shetlar MR. Mast cell analysis in hypertrophic scars, hypertrophic scars treated with pressure and mature scars. J Invest Dermatol. 1978;70:355–7.Google Scholar
  12. 12.
    Varricchi G, Galdiero MR, Loffredo S, Marone G, Iannone R, Marone G, Granata F. Are Mast Cells MASTers in Cancer? Front Immunol. 2017;8:424.Google Scholar
  13. 13.
    Ehrlich HP. A Snapshot of Direct Cell-Cell Communications in Wound Healing and Scarring. Adv Wound Care (New Rochelle). 2013;2:113–21.Google Scholar
  14. 14.
    Khazaie K, Blatner NR, Khan MW, Gounari F, Gounaris E, Dennis K, Bonertz A, Tsa F-N, Strouch MJ, Cheon E, Phillips JD, Beckhove P, Bentrem DJ. The significant role of mast cells in cancer. Cancer Metastasis Rev. 2011;30:45–60.Google Scholar
  15. 15.
    de Souza Jr DA, Santana AC, da Silva EZ, Oliver C, Jamur MC. The Role of Mast Cell Specific Chymases and Tryptases in Tumor Angiogenesis. Biomed Res Int. 2015;2015:142359.Google Scholar
  16. 16.
    Galli SJ, Grimbaldeston M, Tsai M. Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nature Rev Immunol. 2008;8:478–86.Google Scholar
  17. 17.
    Moon TC, St Laurent CD, Morris KE, Marcel C, Yoshimura T, Sekar Y, Befus AD. Advances in mast cell biology: new understanding of heterogeneity and function. Mucosal Immunol. 2010;3:111–28.Google Scholar
  18. 18.
    Wilgus TA, Wulff BC. The Importance of Mast Cells in Dermal Scarring. Adv Wound Care (New Rochelle). 2014;3:356–65.Google Scholar
  19. 19.
    Aller MA, Arias JL, Nava MP, Arias J. Post-traumatic inflammation is a complex response based on the pathological expression of the nervous, immune and endocrine functional systems. Exp Biol Med (Maywood). 2004;229:170–81.Google Scholar
  20. 20.
    Arias JI, Aller MA, Arias J. Surgical inflammation: a pathophysiological rainbow. J Transl Med. 2009;7:19.Google Scholar
  21. 21.
    Sauaia A, Moore FA, Moore EE. Postinjury Inflammation and Organ Dysfunction. Crit Care Clin. 2017;33:167–91.Google Scholar
  22. 22.
    Guo S, Dipietro LA. Factors affecting wound healing. J Dent Res. 2010;89:219–29.Google Scholar
  23. 23.
    Aller MA, Arias JI, Alonso-Poza A, Arias J. A review of metabolic staging in severely injured patients. Scand J Trauma Resusct Emerg Med. 2010;18:27.Google Scholar
  24. 24.
    Libby P. Inflammatory mechanisms: The molecular basis of inflammation and disease. Nutr Rev. 2007;65:140-6.Google Scholar
  25. 25.
    Daigo K, Inforzato A, Barajon I, Garlanda C, Bottazzi B, Meri S, Mantovani A. Pentraxins in the activation and regulation of innate immunity. Immunol Rev. 2016;274:202–17.Google Scholar
  26. 26.
    Buckley CD, Pilling D, Lord JM, Akbar AN, Scheel-Toellner D, Salmon M. Fibroblasts regulate the switch from acute resolving to chronic persistent inflammation. Trends Immunol. 2001;22:199–204.Google Scholar
  27. 27.
    Galli SJ, Tsai M, Marichal T, Tchougounova E, Reber LL, Pejler G. Approaches for analyzing the roles of mast cells and their proteases in vivo. Adv Immunol. 2015;126:45–127.Google Scholar
  28. 28.
    Vukman KV, Försönits A, Oszvald Á, Tóth E, Buzás EI. Mast cell secretome: Soluble and vesicular components. Semin Cell Dev Biol. 2017;67:65–73.Google Scholar
  29. 29.
    Hauswirth AW, Florian S, Schernthaner GH, Krauth MT, Sonneck K, Sperr WR, Valent P. Expression of cell surface antigens on mast cells: mast cell phenotyping. Methods Mol Biol. 2006;315:77–90.Google Scholar
  30. 30.
    Dahlin JS, Hallgren J. Mast cell progenitors: Origin, development and migration to tissues. Mol Immunol. 2015;63:9–17.Google Scholar
  31. 31.
    Bischoff SC. Physiological and pathological functions of intestinal mast cells. Semin Immunopathol. 2009;31:185–205.Google Scholar
  32. 32.
    Wulff BC, Wilgus TA. Mast cell activity in the healing wound: more than meets the eye? Exp Dermatol. 2013;22:507–10.Google Scholar
  33. 33.
    Theoharides TC, Alysandratos K-D, Angelidou A, Delivanis D-A, Sismanopoulos N, Zhang B, Asadi S, Vasiadi M, Weng Z, Miniati A, Kalogeromitros D. Mast cells and inflammation. Biochim Biophys Acta. 2012;1822:21–33.Google Scholar
  34. 34.
    Thacker MA, Clark AK, Marchand F, McMahon SB. Pathophysiology of peripheral neuropathic pain: Immune cells and molecules. Anesth Analg. 2007;105:838–47.Google Scholar
  35. 35.
    Ito A, Hagiyama M, Oonuma J. Nerve-mast cell and smooth muscle-mast cell interaction mediated by cell adhesion molecule-1, CADM1. J Smooth Muscle Res. 2008;44:83–93.Google Scholar
  36. 36.
    Harvima IT, Nilsson G, Naukkarinen A. Role of mast cells and sensory nerves in skin inflammation. G Ital Dermatol Venerol. 2010;145:195–204.Google Scholar
  37. 37.
    Castellani ML, Galzio RJ, Felaco P, Tripodi D, Toniato E, De Lutiis MA, Conti F, Fulcheri M, Conti C, Theoharides TC, Caraffa A, Antinolfi P, Felaco M, Tete S, Pandolfi F, Shaik-Dasthagirisaheb Y-B. VEGF substance P and stress new aspects: a revisited study. J Biol Regul Homeost Agents. 2010;24:229–37.Google Scholar
  38. 38.
    Galli SJ, Nakae S, Tsai M. Mast cells in the development of adaptive immune responses. Nature Immunol. 2005;6:135–42.Google Scholar
  39. 39.
    Tete S, Tripodi D, Rosati M, Conti F, Maccauro G, Saggini A, Salini V, Cianchetti E, Caraffa A, Antinolfi P, Toniato E, Castellani ML, Pandolfi F, Frydas S, Conti P, Theoharides TC. Role of mast cells in innate and adaptive immunity. J Biol Regul Homeost Agents. 2012;26:193–201.Google Scholar
  40. 40.
    Kumar V, Sharma A. Mast cells: Emerging sentinel innate immune cells with diverse role in immunity. Mol Immunol. 2010;48:14–25.Google Scholar
  41. 41.
    Lu L-F, Lind EF, Gondek DC, Bennett KA, Gleeson MW, Pino-Lagos K, Scott ZA, Coyle AJ, Reed JL, Van Snick J, Strom TB, Zheng XX, Noelle RJ. Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature. 2006;442:997–1002.Google Scholar
  42. 42.
    Kwon JS, Kim YS, Cho AS, Cho HH, Kim JS, Hong MH, Jeong SY, Jeong MH, Cho JG, Park JC, Kang JC, Ahn Y. The novel role of mast cells in the microenvironment of acute myocardial infarction. J Mol Cell Cardiol. 2011;50:814–25.Google Scholar
  43. 43.
    Oskeritzian CA. Mast cell plasticity and sphingosine-1-phosphate in immunity, inflammation and cancer. Mol Immunology. 2015;63:104–22.Google Scholar
  44. 44.
    Singh J, Shah R, Singh D. Targeting mast cells: Uncovering prolific therapeutic role in myriad diseases. Int Immunopharmacol. 2016;40:362–84.Google Scholar
  45. 45.
    Bradding P, Walls AF, Holgate ST. The role of the mast cell in the pathophysiology of asthma. J Allergy Clin Immunol. 2006;117:1277–84.Google Scholar
  46. 46.
    Subramanian H, Gupta K, Ali H. Roles of Mas-related G protein-coupled receptor X2 on mast cell-mediated host defense, pseudoallergic drug reactions, and chronic inflammatory diseases. J Allergy Clin Immunol. 2016;138:700–10.Google Scholar
  47. 47.
    Modena BD, Dazy K, White AA. Emerging concepts: mast cell involvement in allergic diseases. Transl Res. 2016;174:98–121.Google Scholar
  48. 48.
    Mu Z, Zhao Y, Liu X, Chang C, Zhang J. Molecular biology of atopic dermatitis. Clin Rev Allergy Immunol. 2014;47:193–218.Google Scholar
  49. 49.
    Divoux A, Moutel S, Poitou C, Lacasa D, Veyrie N, Aissat A, Arock M, Guerre-Millo M, Clément KJ. Mast cells in human adipose tissue: link with morbid obesity, inflammatory status, and diabetes. Clin Endocrinol Metab. 2012;97:E1677–85.Google Scholar
  50. 50.
    Diegelman RF, Evans MC. Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci. 2004;9:283–9.Google Scholar
  51. 51.
    Detoraki A, Granata F, Staibano S, Rossi FW, Marone G, Genovese A. Angiogenesis and lymphangiogenesis in bronchial asthma. Allergy. 2010;65:946–58.Google Scholar
  52. 52.
    Dazzi F, Krampera M. Mesenchymal stem cells and autoimmune diseases. Best Pract Res Clin Haematol. 2011;24:49–57.Google Scholar
  53. 53.
    Klueh U, Kaur M, Qiao Y, Kreutzer DL. Critical role of tissue mast cells in controlling long-term glucosa sensor function in vivo. Biomaterials. 2010;31:4540–51.Google Scholar
  54. 54.
    Van den Broek LJ, Limandjaja GC, Niessen FB, Gibbs S. Human hypertrophic and keloid scar models: principles, limitations and future challenges from a tissue engineering perspective. Exp Dermatol. 2014;23:382–6.Google Scholar
  55. 55.
    Guo N, Baglole CJ, O’Loughilin CW, Feldon SE, Phipps RP. Mast cell-derived prostaglandin D2 controls hyaluronan synthesis in human orbital fibroblasts via DP1 activation. Implications for thyroid eye disease. J Biol Chem. 2010;285:15794–804.Google Scholar
  56. 56.
    Kaur D, Saunders R, Hollins F, Woodman L, Doe C, Siddiqui S, Bradding P, Brightling C. Mast cell fibroblastoid differentiation mediated by airway smooth muscle in asthma. J Immunol. 2010;185:6105–14.Google Scholar
  57. 57.
    Freeman TA, Parvizi J, De la Valle CJ, Steinbeck MJ. Mast cells and hypoxia drive tissue metaplasia and heterotopic ossification in idiopathic arthrofibrosis after total knee arthroplasty. Fibrogenes Tissue Repair. 2010;3:17.Google Scholar
  58. 58.
    Schâfer M, Werner S. Cancer as an overhealing wound: an old hypothesis revisited. Nat Mol Cell Biol. 2008;9:628–38.Google Scholar
  59. 59.
    Whiteside TL. The tumor microenvironment and its role in promoting tumor growth. Oncogen. 2008;27:5904–12.Google Scholar
  60. 60.
    Moore MM, Chua W, Charles KA, Clarke SJ. Inflammation and cancer: causes and consequences. Clin Pharmacol Ther. 2010;87:504–8.Google Scholar
  61. 61.
    Allen M, Jones JL. Jekyll and Hyde: the role of the microenvironment on the progression of cancer. J Pathol. 2011;223:646–58.Google Scholar
  62. 62.
    Grivennikov SI, Greten FR, Karin M. Immunity, inflammation and cancer. Cell. 2010;40:883–99.Google Scholar
  63. 63.
    Schetter AJ, Heegaard NHH, Harris CC. Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis. 2010;31:37–49.Google Scholar
  64. 64.
    Adcock IA, Caramori G, Barnes JP. COPD pathology in the small airways. Panminerva Med. 2011;53:51–70.Google Scholar
  65. 65.
    Subramaniam R, Mizoguchi A, Mizoguchi E. Mechanistic roles of epithelial and immune cell signaling during the development of colitis-associated cancer. Cancer Res Front. 2016;2:1–21.Google Scholar
  66. 66.
    Terlizzi M, Casolaro V, Pinto A, Sorrentino A. R. Inflammasome: cancer’s friend or foe? Pharmacol Ther. 2014;143:24–33.Google Scholar
  67. 67.
    Liu ST, Pham H, Pandol SJ, Ptasznik A. Src as the link between inflammation and cancer. Front Physiol. 2014;4:416.Google Scholar
  68. 68.
    Liu C, Xu S, Ma Z, Zeng Y, Chen Z, Lu Y. Generation of pluripotent cancer-initiating cells from transformed bone marrow-derived cells. Cancer Lett. 2011;303:140–9.Google Scholar
  69. 69.
    Arias JI, Aller MA, Sanchez-Patan F, Arias J. Inflammation and cancer: Is trophism the link? Surg Oncol. 2006;15:235–42.Google Scholar
  70. 70.
    Liu J, Zhang Y, Zhao J, Yang Z, Li D, Katirai F, Huang B. Mast cell: insight into remodeling a tumor microenvironment. Cancer Metastasis Rev. 2011;30:177–84.Google Scholar
  71. 71.
    Bayarsaihan D. Epigenetic mechanisms in inflammation. J Dent Res. 2011;90:9–17.Google Scholar
  72. 72.
    Hatziapostolou M, Iliopoulos D. Epigenetic aberrations during oncogenesis. Cell Mol Life Sci. 2011;68:1681–702.Google Scholar
  73. 73.
    Kidane D, Chae WJ, Czochor J, Eckert KA, Glazer PM, Bothwell ALM, Sweasy JB. An Interplay between DNA repair and inflammation, and the link to cancer. Crit Rev Biochem Mol Biol. 2014;49:116–39.Google Scholar
  74. 74.
    Bamias A, Dimopoulos MA. Angiogenesis in human cancer: implications in cancer therapy. Eur J Int Med. 2003;14:459–69.Google Scholar
  75. 75.
    Denko NC, Fontana LA, Hudson KM, Sutphin PD, Raychaudhuri S, Altman R, Giaccia AJ. Investigating hypoxic tumor physiology through gene expression patterns. Oncogene. 2003;22:5907–14.Google Scholar
  76. 76.
    Eltzschig HK, Carmeliet P. Hypoxia and inflammation. N Engl J Med. 2011;364:656–65.Google Scholar
  77. 77.
    Soh H, Wasa M, Fukuzawa M. Hypoxia upregulates aminoacid transport in a human neuroblastoma cell line. J Pediatr Surg. 2007;42:608–12.Google Scholar
  78. 78.
    Van der Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.Google Scholar
  79. 79.
    Sedoris KC, Thomas SD, Miller DM. Hypoxia induces differential translation of enolase/MBP-1. BMC Cancer. 2010;10:157.Google Scholar
  80. 80.
    Shanware NP, Mullen AR, DeBerardinis RJ, Abraham RT. Glutamine: pleiotropic roles in tumor growth and stress resistance. J Mol Med (Berl). 2011;89:229–36.Google Scholar
  81. 81.
    Gulliksson M, Carvalho RFS, Ulleras E, Nilsson G. Mast cell survival and mediator secretion in response to hypoxia. Plos One. 2010;5:e12360.Google Scholar
  82. 82.
    Hussain SP, Hofseth LJ, Harris CC. Radical causes of cancer. Nat Rev Cancer. 2003;3:276–85.Google Scholar
  83. 83.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.Google Scholar
  84. 84.
    Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation and cancer: how are they linked? Free Rad Biol Med. 2010;49:1603–16.Google Scholar
  85. 85.
    Hadler-Olsen E, Winberg JO, Uhlin-Hansen L. Matrix metalloproteinases in cancer: their value as diagnostic and prognostic markers and therapeutic targets. Tumour Biol. 2013;34:2041–51.Google Scholar
  86. 86.
    Freitas I, Baronzio GF, Bono B, Griffini P, Bertone V, Sonzini N, Magrassi GR, Bonandrini L, Gerzeli G. Tumor interstitial fluid: Misconsidered component of the internal milieu of a solid tumor. Anticancer Res. 1997;17:165–72.Google Scholar
  87. 87.
    Gialeli C, Theocharis AD, Karamanos NK. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 2011;278:16–27.Google Scholar
  88. 88.
    Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141:52–67.Google Scholar
  89. 89.
    de Souza Jr DA, Santana AC, Zayas E, Da Silva M, Oliver C, Jamur MC. The role of mast cell specific chymases and tryptases in tumor angiogenesis. Biomed Res Int. 2015;2015:142359.Google Scholar
  90. 90.
    Eisenhut M, Wallace H. Ion channels in inflammation. Pflugers Arch Eur J Physiol. 2011;46:401–2.Google Scholar
  91. 91.
    Wiig H, Tenstad O, Iversen PO, Kalluri R, Bjerkvig R. Interstitial fluid: the overlooked component of the tumor microenvironment? Fibrogenes Tissue Repair. 2010;3:12.Google Scholar
  92. 92.
    Shieh AC, Swartz MA. Regulation of tumor invasion by interstitial fluid flow. Physiol Biol. 2011;8:1–8.Google Scholar
  93. 93.
    Teng P-N, Hood BL, Sun M, Dhir R, Conrads TP. Differential proteomic analysis of renal cell carcinoma tissue interstitial fluid. J Proteome Res. 2011;10:1333–42.Google Scholar
  94. 94.
    Karaman S, Detmar M. Mechanisms of lymphatic metastasis. J Clin Invest. 2014;124:922–8.Google Scholar
  95. 95.
    Schoppmann SF. Lymphangiogenesis, inflammation and metastasis. Anticancer Res. 2005;25:4503–11.Google Scholar
  96. 96.
    Paduch R. The role of lymphangiogenesis and angiogenesis in tumor metastasis. Cell Oncol (Dordr). 2016;39:397–410.Google Scholar
  97. 97.
    Zhang Z, Helman JI, Li L-J. Lymphangiogenesis, lymphatic endothelial cells and lymphatic metastasis in head and neck cancer. A review of mechanisms. Int J Oral Sci. 2010;2:5–14.Google Scholar
  98. 98.
    Rutkowski JM, Swartz MA. A driving force for change: interstitial flow as a morphoregulator. Trends Cell Biol. 2006;17:44–50.Google Scholar
  99. 99.
    Nechustan H. The complexity of the complicity of mast cells in cancer. Intern J Biochem Cell Biol. 2010;42:551–4.Google Scholar
  100. 100.
    Heijmans J, Büller NV, Muncan V, Van den Brink GR. Role of mast cells in colorectal cancer development, the jury is still out. Biochim Biophys Acta. 2012;1822:9–13.Google Scholar
  101. 101.
    Katsanos GS, Anogeianaki A, Orso C, Tete S, Salini V, Antinolfi PL, Sabatino G. Mast cells and chemokines. J Biol Regul Homeost Agents. 2008;22:145–51.Google Scholar
  102. 102.
    Yadav A, Saini V, Anora S. MCP-1: Chemoattractant with a role beyond immunity: A review. Clin Chimica Acta. 2010;41:1570–9.Google Scholar
  103. 103.
    Yang L, Pang Y, Moses HL. TGF-β and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol. 2010;31:220–7.Google Scholar
  104. 104.
    Pages F, Galon J, Dieu-Nosjean MC, Tartour E, Sautes-Fridman C, Fridman WH. Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene. 2010;29:1093–102.Google Scholar
  105. 105.
    Ruffell B, DeNardo DG, Affara NI, Coussens LM. Lymphocytes in cancer development: polarization towards pro-tumor immunity. Cytokine Growth Factor Rev. 2010;21:3–10.Google Scholar
  106. 106.
    Hügle T, Hogan V, White KE, Van Laar JM. Mast cells are a source of transforming growth factor β in systemic sclerosis. Arthritis Rheum. 2011;63:795–9.Google Scholar
  107. 107.
    Melillo RM, Guarino V, Avilla E, Galdiero MR, Liotti F, Prevete N, Rossi FW, Basolo F, Ugolini C, De Paulis A, Santoro M, Marone G. Mast cells have a protumorigenic role in human thyroid cancer. Oncogene. 2010;29:6203–15.Google Scholar
  108. 108.
    De Vries VC, Pino-Lagos K, Elgueta R, Noelle RJ. The enigmatic role of mast cells in dominant tolerance. Curr Opin Organ Transpl. 2009;14:332–7.Google Scholar
  109. 109.
    De Vries V, Noelle RJ. Mast cell mediators in tolerance. Curr Opin Immunol. 2010;22:643–8.Google Scholar
  110. 110.
    Prehn RT, Prehn LM. Cancer immunotherapy by immunosuppression. Theor Biol Med Model. 2010;7:45.Google Scholar
  111. 111.
    Clement CC, Rotzsche O, Santambrogio L. The lymph as a pool of self-antigens. Trends Immunol. 2001;32:6–11.Google Scholar
  112. 112.
    Palucka K, Ueno H, Fay J, Banchereau J. Dendritic cells and immunity against cancer. J Intern Med. 2011;269:64–73.Google Scholar
  113. 113.
    Kalesnikoff J, Galli SJ. Antiinflammatory and immunosuppressive functions of mast cells. Methods Mol Biol. 2011;677:207–20.Google Scholar
  114. 114.
    Fehres CM, Unger WW, Garcia-Vallejo JJ, van Kooyk Y. Understanding the biology of antigen cross-presentation for the design of vaccines against cancer. Front Immunol. 2014;5:149.Google Scholar
  115. 115.
    Zhang LZ, Zhang CQ, Yan ZY, Yang QC, Jiang Y, Zeng BF. Tumor-initiating cells and tumor vascularization. Pediatr Blood Cancer. 2011;56:335–40.Google Scholar
  116. 116.
    Fukumura D, Duda DG, Munn LL, Jain RK. Tumor microvasculature and microenvironment: novel insights through intravital imaging in pre-clinical models. Microcirculation. 2010;17:206–25.Google Scholar
  117. 117.
    Sun Q, Li X, Lu X, Di B. Cancer stem cells may be mostly maintained by fluctuating hypoxia. Med Hypothesis. 2011;76:1–3.Google Scholar
  118. 118.
    Coussens LM, Werb Z. Inflammatory cells and cancer: Think different. J Exp Med. 2001;193:F23-6.Google Scholar
  119. 119.
    Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–67.Google Scholar
  120. 120.
    Conti P, Caraffa A, Kritas SK, Ronconi G, Lessiani G, Toniato E, Theoharides TC. Mast cell, pro-inflammatory and anti-inflammatory: Jekyll and Hyde, the story continues. J Biol Regul Homeost Agents. 2017;31:263–7.Google Scholar
  121. 121.
    Tamma R, Guidolin D, Annese T, Tortorella C, Ruggieri S, Rega S, Zito FA, Nico B, Ribatti D. Spatial distribution of mast cells and macrophages around tumor glands in human breast ductal carcinoma. Exp Cell Res. 2017;359:179–84.Google Scholar
  122. 122.
    Ammendola M, Gadaleta CD, Frampton AE, Piardi T, Memeo R, Zuccalà V, Luposella M, Patruno R, Zizzo N, Gadaleta P, Pessaux P, Sacco R, Sammarco G, Ranieri G. The density of mast cells c-Kit + and tryptase + correlates with each other and with angiogenesis in pancreatic cancer patients. Oncotarget. 2017;8:70463–71.Google Scholar
  123. 123.
    Jiang L, Hua Y, Shen Q, Ding S, Jiang W, Zhang W, Zhu X. Role of mast cells in gynecological neoplasms. Front Biosci (Landmark Ed). 2013;18:773–81.Google Scholar
  124. 124.
    Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331:1559–64.Google Scholar
  125. 125.
    Egeblad M, Littlepage LE, Werb Z. The fibroblastic coconspirator in cancer progression. Quant Biol. 2005;70:383–8.Google Scholar
  126. 126.
    Patel SA, Heinrich AC, Reddy BY, Rameshwar P. Inflammatory mediators. Parallels between cancer biology and stem cell therapy. J Inflamm Res. 2009;1:13–9.Google Scholar
  127. 127.
    Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto A. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest. 2009;119:1438–49.Google Scholar
  128. 128.
    Yang F-C, Chen S, Clegg T, Li X, Morgan T, Estwick SA, Yuan J, Khalat W, Burgin S, Travers J, Parada LF, Ingram DA, Clapp DW. Nf1+/-mast cells induce neurofibroma like phenotype through secreted TGF-β signaling. Hum Mol Genet. 2006;15:2421–37.Google Scholar
  129. 129.
    Neurath MF, Finotto S. IL-6 signaling in autoimmunity, chronic inflammation and inflammation-associated cancer. Cytokine Growth Factor Rev. 2011;22:83–9.Google Scholar
  130. 130.
    Campbell L, Quiu W, Haviv L. Genetic changes in tumour microenvironments. J Pathol. 2011;223:450–8.Google Scholar
  131. 131.
    Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986;315:1650–9.Google Scholar
  132. 132.
    Crivellato E, Ribatti D. The mast cell: an evolutionary perspective. Biol Rev. 2010;85:347–60.Google Scholar
  133. 133.
    Wang Y, Steinbeisser H. Molecular basis of morphogenesis during vertebrates gastrulation. Cell Mol Life. 2009;66:2263–73.Google Scholar
  134. 134.
    Chang YJ, Hwang SM, Tseng CP, Cheng FC, Huang SH, Hsu LW, Tsai MS. Isolation of mesenchymal stem cells with neurogenic potentials from the mesoderm of the amniotic membrane. Cell Tissues Organs. 2010;192:93–105.Google Scholar
  135. 135.
    Pfeiffer S, McLaughlin D. In vitro differentiation of human amniotic fluid derived cells: augmentation towards a neuronal dopaminergic phenotype. Cell Biol Int. 2010;34:959–67.Google Scholar
  136. 136.
    Nijnejad H, Peirov H, Jorjani M, Ahmadiani A, Ghanavi J, Seifalina M. Properties of the amniotic membrane for potential use in tissue engineering. Eur Cell Mater. 2008;15:88–99.Google Scholar
  137. 137.
    Yu SJ, Soncini M, Kaneko Y, Hess DC, Parolini O, Borlongan CV. Amnion: a potent graf for cell therapy in stroke. Cell Transpl. 2009;18:111–8.Google Scholar
  138. 138.
    Uberti MG, Pierpont YN, Ko F, Wright TE, Smith CA, Cruse CW, Robson M, Pay WG. Amnion-derived cellular cytokine solution (ACCS) promotes migration of keratinocytes and fibroblasts. Ann Plast Surg. 2010;64:632–5.Google Scholar
  139. 139.
    Bellini C, Boccardo F, Bonioli E, Campisi C. Lymphodynamics in the fetus and newborn. Lymphology. 2006;39:110–7.Google Scholar
  140. 140.
    Fraser ST, Baron MH. Embryonic fates for extraembryonic lineages: new perspectives. J Cell Biochem. 2009;107:586–91.Google Scholar
  141. 141.
    Yoshida S, Wada Y. Transfer of maternal cholesterol to embryo and fetus in pregnant mice. J Lipid Res. 2005;46:2168–74.Google Scholar
  142. 142.
    Sheng G. Primitive and definitive erythropoiesis in the yolk sac: a bird’s eye view. Int J Dev Biol. 2010;54:1033–43.Google Scholar
  143. 143.
    Wang D, Dubois RN. Eicosanoids and cancer. Nature Rev. 2010;10:181–92.Google Scholar
  144. 144.
    Wu Y, Zhao RCH, Terdget EE. Concise review: Bone marrow-derived stem/progenitor cells in cutaneous repair and regeneration. Stem Cells. 2010;28:905–5.Google Scholar
  145. 145.
    Huynh HD, Zheng J, Umikawa M, Silvany R, Xie X-J, Wu CJ, Holzenberger M, Wang Q, Zhan CC. Components of the hematopoietic compartments in tumor stroma and tumor-bearing mice. Plos One. 2011;6:e18054.Google Scholar
  146. 146.
    Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: Integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–70.Google Scholar
  147. 147.
    Nguyen DX. Tracing the origins of metastasis. J Pathol. 2011;223:195–204.Google Scholar
  148. 148.
    Mukai K, Tsai M, Saito H, Galli SJ. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol Rev. 2018;282:121–50.Google Scholar
  149. 149.
    Ribatti D, Tamma R, Crivellato E. The dual role of mast cells in tumor fate. Cancer Lett. 2018;433:252–8.Google Scholar
  150. 150.
    Hendrix MJC, Seftor EA, Seftor RE, Kasemeier-Kulesa J, Kulesa PM, Postovit LM. Epigenetically reprogramming metastatic tumour cells with embryonic microenvironment. Epigenomics. 2009;1:387–98.Google Scholar
  151. 151.
    Strizzi L, Ardí KM, Kirsammer GT, Gerami P, Hendrix MJC. Embryonic signaling in melanoma: potential for diagnosis and therapy. Lab Invest. 2011;91:819–24.Google Scholar
  152. 152.
    Sell S. Cellular origin of cancer: dedifferentiation or stem cell maturation arrest? Environ Health Perspect. 1993;101:15–26.Google Scholar
  153. 153.
    Thiery JP, Acloque H, Huang RYJ, Nieto A. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–86.Google Scholar
  154. 154.
    Singh A, Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene. 2010;29:4741–5.Google Scholar
  155. 155.
    Tisty TD, Coussens LM. Tumor stroma and regulation of cancer development. Ann Rev Pathol. 2006;1:119–50.Google Scholar
  156. 156.
    Tamma R, Ribatti D. Bone niches, hematopoietic stem cells, and vessel formation. Int J Mol Sci. 2017;18:E151.Google Scholar
  157. 157.
    Fukunaga M, Nunomura S, Nishida S, Endo K, Gon Y, Hashimoto S, Hashimoto Y, Okayama Y, Makishima M, Ra C. Mast cell death induced by 24(S),25-epoxycholesterol. Exp Cell Res. 2010;316:3272–81.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Surgery, School of MedicineComplutense University of MadridMadridSpain
  2. 2.Department of Internal Medicine, Puerta de Hierro HospitalAutonoma University of MadridMadridSpain
  3. 3.Unit of General SurgeryMonte Naranco HospitalOviedoSpain

Personalised recommendations