Inflammation Research

, Volume 68, Issue 2, pp 93–102 | Cite as

The role of osteopontin in kidney diseases

  • Beata KaletaEmail author



Osteopontin (OPN) is a pleiotropic glycoprotein expressed in various cell types in animals and in humans, including bone, immune, smooth muscle, epithelial and endothelial cells. Moreover, OPN is found in kidneys (in the thick ascending limbs of the loop of Henle and in distal nephrons) and urine. The protein plays an important role in mineralization and bone resorption. In addition, OPN is involved in the regulation of immunity and inflammation, angiogenesis and apoptosis. It was demonstrated that OPN and some OPN gene polymorphic variants are associated with the pathogenesis and progression of multiple disorders, such as cancer, autoimmune, neurodegenerative and cardiovascular diseases. Moreover, recent studies suggested that OPN is associated with the pathogenesis of renal failure.


In this review, I briefly discussed the role of OPN and its gene polymorphisms in kidney physiology, as well as in various kidney diseases.

Findings and Conclusion

Most studies reported that OPN expression is elevated in urolithiasis, and also in acute and chronic kidney diseases, and in renal allograft dysfunction. Moreover, it was demonstrated that polymorphic variants of the OPN gene may be associated with renal failure. However, some reports suggested that OPN is essential for tubulogenesis, and that it inhibits calcium oxalate crystal formation and retention, nitric oxide synthesis, cell apoptosis and promotes cell regeneration.

Thus, further studies are required to fully understand the role of OPN in kidney physiology and pathology. Eventually, these studies may result in the identification of OPN as a valuable marker for renal dysfunction prognosis and treatment.


Kidney Kidney disease Marker Osteopontin 



The author received no specific funding for this work.

Compliance with ethical standards

Conflict of interest

The author declares that has no conflicts of interests.


  1. 1.
    Fisher LW, Torchia DA, Fohr B, Young MF, Fedarko NS. Flexible structures of SIBLING proteins, bone sialoprotein, and osteopontin. Biochem Biophys Res Commun. 2001;280:460–5.Google Scholar
  2. 2.
    Pichler R, Giachelli CM, Lombardi D, Pippin J, Gordon K, Alpers CE, et al. Tubulointerstitial disease in glomerulonephritis. Potential role of osteopontin (uropontin). Am J Pathol. 1994;144:915–26.Google Scholar
  3. 3.
    Ramaiah SK, Rittling S. Pathophysiological role of osteopontin in hepatic inflammation, toxicity, and cancer. Toxicol Sci. 2008;103:4–13.Google Scholar
  4. 4.
    Franzen A, Heinegard D. Isolation and characterization of two sialoproteins present only in bone calcified matrix. Biochem J. 1985;232:715–24.Google Scholar
  5. 5.
    Kruger TE, Miller AH, Godwin AK, Wang J. Bone sialoprotein and osteopontin in bone metastasis of osteotropic cancers. Crit Rev Oncol Hematol. 2014;89:330–41.Google Scholar
  6. 6.
    Denhardt DT, Guo X. Osteopontin: a protein with diverse functions. FASEB J. 1993;7:1475–82.Google Scholar
  7. 7.
    Ross FP, Chappel J, Alvarez J, Sander D, Butler W, Farach-Carson M, et al. Interactions between the bone matrix proteins osteopontin and bone sialoprotein and the osteoclast integrin alpha v beta 3 potentiate bone resorption. J Biol Chem. 1993;268:9901–7.Google Scholar
  8. 8.
    Giachelli CM, Steitz S. Osteopontin: a versatile regulator of inflammation and biomineralization. Matrix Biol. 2000;19:615–22.Google Scholar
  9. 9.
    Murugaiyan G, Mittal A, Weiner HL. Increased osteopontin expression in dendritic cells amplifies IL-17 production by CD4+ T cells in experimental autoimmune encephalomyelitis and in multiple sclerosis. J Immunol. 2008;181:7480–8.Google Scholar
  10. 10.
    Ashkar S, Weber GF, Panoutsakopoulou V, Sanchirico ME, Jansson M, Zawaideh S, et al. Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity. Science. 2000;287:860–4.Google Scholar
  11. 11.
    Rangaswami H, Bulbule A, Kundu GC. Osteopontin: role in cell signaling and cancer progression. Trends Cell Biol. 2006;16:79–87.Google Scholar
  12. 12.
    Afify MF, Mohamed GB, El-Maboud MA, Abdel-Latif EA. Plasma concentration of osteopontin (OPN) in children with systemic lupus erythematosus: relationship with disease activity. Open Autoimmun J. 2009;1:59–63.Google Scholar
  13. 13.
    Cantor H. The role of Eta-1/osteopontin in the pathogenesis of immunological disorders. Ann N Y Acad Sci. 1995;760:143–50.Google Scholar
  14. 14.
    Carecchio M, Comi C. The role of osteopontin in neurodegenerative diseases. J Alzheimers Dis. 2011;25:179–85.Google Scholar
  15. 15.
    Frenzel DF, Weiss JM. Osteopontin and allergic disease: pathophysiology and implications for diagnostics and therapy. Expert Rev Clin Immunol. 2011;7:93–109.Google Scholar
  16. 16.
    Han S, Guthridge JM, Harley IT, Sestak AL, Kim-Howard X, Kaufman KM, et al. Osteopontin and systemic lupus erythematosus association: a probable gene-gender interaction. PLoS One. 2008;3:e0001757.Google Scholar
  17. 17.
    Konno S, Kurokawa M, Uede T. Role of osteopontin, a multifunctional protein, in allergy and asthma. Clin Exp Allergy. 2011;41:1360–6.Google Scholar
  18. 18.
    Mishima R, Takeshima F, Sawai T, Ohba K, Ohnita K, Isomoto H, et al. High plasma osteopontin levels in patients with inflammatory bowel disease. J Clin Gastroenterol. 2007;41:167–72.Google Scholar
  19. 19.
    Clemente N, Raineri D, Cappellano G, Boggio E, Favero F, Soluri M, et al. Osteopontin bridging innate and adaptive immunity in autoimmune diseases. J Immunol Res. 2016;2016:7675437.Google Scholar
  20. 20.
    Standal T, Borset M, Sundan A. Role of osteopontin in adhesion, migration, cell survival and bone remodeling. Exp Oncol. 2004;26:179–84.Google Scholar
  21. 21.
    Kazanecki CC, Uzwiak DJ, Denhardt DT. Control of osteopontin signaling and function by post-translational phosphorylation and protein folding. J Cell Biochem. 2007;102:912–24.Google Scholar
  22. 22.
    Singh K, DeVouge MW, Mukherjee BB. Physiological properties and differential glycosylation of phosphorylated and nonphosphorylated forms of osteopontin secreted by normal rat kidney cells. J Biol Chem. 1990;265:18696–701.Google Scholar
  23. 23.
    Nagata T, Todescan R, Goldberg HA, Zhang Q, Sodek J. Sulphation of secreted phosphoprotein I (SPPI, osteopontin) is associated with mineralized tissue formation. Biochem Biophys Res Commun. 1989;165:234–40.Google Scholar
  24. 24.
    Sørensen ES, Højrup P, Petersen TE. Posttranslational modifications of bovine osteopontin: identification of twenty-eight phosphorylation and three O-glycosylation sites. Protein Sci. 1995;4:2040–9.Google Scholar
  25. 25.
    Gimba ER, Tilli TM. Human osteopontin splicing isoforms: known roles, potential clinical applications and activated signaling pathways. Cancer Lett. 2013;331:11–7.Google Scholar
  26. 26.
    Inoue M, Shinohara ML. Intracellular osteopontin (iOPN) and immunity. Immunol Res. 2011;49:160–72.Google Scholar
  27. 27.
    Junaid A, Moon MC, Harding GE, Zahradka P. Osteopontin localizes to the nucleus of 293 cells and associates with polo-like kinase-1. Am J Physiol Cell Physiol. 2007;292:C919–26.Google Scholar
  28. 28.
    Oldberg A, Franzen A, Heinegard D. Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence. Proc Natl Acad Sc USA. 1986;83:8819–23.Google Scholar
  29. 29.
    Patarca R, Saavedra RA, Cantor H. Molecular and cellular basis of genetic resistance to bacterial infection: the role of the early T-lymphocyte activation-1/osteopontin gene. Crit Rev Immunol. 1993;13:225–46.Google Scholar
  30. 30.
    Hu DD, Lin EC, Kovach NL, Hoyer JR, Smith JW. A biochemical characterization of the binding of osteopontin to integrins alpha v beta 1 and alpha v beta 5. J Biol Chem. 1995;270:26232–8.Google Scholar
  31. 31.
    Green PM, Ludbrook SB, Miller DD, Horgan CM, Barry ST. Structural elements of the osteopontin SVVYGLR motif important for the interaction with alpha(4) integrins. FEBS Lett. 2001;503:75–9.Google Scholar
  32. 32.
    Weber GF, Ashkar S, Glimcher MJ, Cantor H. Receptor-ligand interaction between CD44 and osteopontin (Eta-1). Science. 1996;271:509–12.Google Scholar
  33. 33.
    Hudkins KL, Giachelli CM, Cui Y, Couser WG, Johnson RJ, Alpers CE. Osteopontin expression in fetal and mature human kidney. J Am Soc Nephrol. 1999;10:444–57.Google Scholar
  34. 34.
    Xie Y, Sakatsume M, Nishi S, Narita I, Arakawa M, Gejyo F. Expression, roles, receptors, and regulation of osteopontin in the kidney. Kidney Int. 2001;60:1645–57.Google Scholar
  35. 35.
    Rabb H, Barroso-Vicens E, Adams R, Pow-Sang J, Ramirez G. Alpha-V/beta-3 and alpha-V/beta-5 integrin distribution in neoplastic kidney. Am J Nephrol. 1996;16:402–8.Google Scholar
  36. 36.
    Hara I, Miyake H, Yamanaka K, Hara S, Arakawa S, Kamidono S. Expression of CD44 adhesion molecules in nonpapillary renal cell carcinoma and normal kidneys. Urology. 1999;54:562–6.Google Scholar
  37. 37.
    Rogers SA, Padanilam BJ, Hruska KA, Giachelli CM, Hammerman MR. Metanephric osteopontin regulates nephrogenesis in vitro. Am J Physiol. 1997;272:F469-76.Google Scholar
  38. 38.
    Wada J, Kumar A, Liu Z, Ruoslahti E, Reichardt L, Marvaldi J, et al. Cloning of mouse integrin alphaV cDNA and role of the alphaV-related matrix receptors in metanephric development. J Cell Biol. 1996;132:1161–76.Google Scholar
  39. 39.
    Ophascharoensuk V, Giachelli CM, Liaw L, Shankland SJ, Couser WG, Johnson RJ. Osteopontin (OPN) mediates early macrophage influx in renal interstitial inflammation: a study in OPN knockout (KO) mice. J Am Soc Nephrol. 1997;8:481A.Google Scholar
  40. 40.
    Shiraga H, Min W, VanDusen WJ, Clayman MD, Miner D, Terrell CH, et al. Inhibition of calcium oxalate crystal growth in vitro by uropontin: another member of the aspartic acid-rich protein superfamily. Proc Natl Acad Sci USA. 1992;89:426–30.Google Scholar
  41. 41.
    Worcester EM, Beshensky AM. Osteopontin inhibits nucleation of calcium oxalate crystals. Ann N Y Acad Sci. 1995;760:375–7.Google Scholar
  42. 42.
    Lieske JC, Leonard R, Toback FG. Adhesion of calcium oxalate monohydrate crystals to renal epithelial cells is inhibited by specific anions. Am J Physiol. 1995;268:F604-2.Google Scholar
  43. 43.
    Asplin JR, Arsenault D, Parks JH, Coe FL, Hoyer JR. Contribution of human uropontin to inhibition of calcium oxalate crystallization. Kidney Int. 1998;53:194–9.Google Scholar
  44. 44.
    Lieske JC, Norris R, Toback FG. Adhesion of hydroxyapatite crystals to anionic sites on the surface of renal epithelial cells. Am J Physiol. 1997;273:F22433.Google Scholar
  45. 45.
    Hoyer JR, Otvos L Jr, Urge L. Osteopontin in urinary stone formation. Ann N Y Acad Sci. 1995;760:257–65.Google Scholar
  46. 46.
    Icer MA, Gezmen-Karadag M, Sozen S. Can urine osteopontin levels, which may be correlated with nutrition intake and body composition, be used as a new biomarker in the diagnosis of nephrolithiasis? Clin Biochem. 2018;60:38–43.Google Scholar
  47. 47.
    Liu CC, Huang SP, Tsai LY, Wu WJ, Juo SHH, Chou YH, et al. The impact of osteopontin promoter polymorphisms on the risk of calcium urolithiasis. Clin Chim Acta. 2010;411:739–43.Google Scholar
  48. 48.
    Yasui T, Fujita K, Hayashi Y, Ueda K, Kon S, Maeda M, et al. Quantification of osteopontin in the urine of healthy and stone-forming men. Urol Res. 1999;27:225–30.Google Scholar
  49. 49.
    Huang HS, Ma MC, Chen CF, Chen J. Lipid peroxidation and its correlations with urinary levels of oxalate, citric acid, and osteopontin in patients with renal calcium oxalate stones. Urology. 2003;62:1123–8.Google Scholar
  50. 50.
    Gao B, Yasui T, Itoh Y, Li Z, Okada A, Tozawa K, et al. Association of osteopontin gene haplotypes with nephrolithiasis. Kidney Int. 2007;72:592–8.Google Scholar
  51. 51.
    Tsuji H, Tohru U, Hirotsugu U, Masanori I, Yuji H, Takashi K. Urinary concentration of osteopontin and association with urinary supersaturation and crystal formation. Int J Urol. 2007;14:630–4.Google Scholar
  52. 52.
    Yamate T, Kohri K, Umekawa T, Amasaki N, Amasaki N, Isikawa Y, et al. The effect of osteopontin on the adhesion of calcium oxalate crystals to Madin–Darby canine kidney cells. Eur Urol. 1996;30:388–93.Google Scholar
  53. 53.
    Yamate T, Kohri K, Umekawa T, Iguchi M, Kurita T. Osteopontin antisense oligonucleotide inhibits adhesion of calcium oxalate crystals in Madin–Darby canine kidney cell. J Urol. 1998;160:1506–12.Google Scholar
  54. 54.
    Yamate T, Kohri K, Umekawa T, Konya E, Ishikawa Y, Iguchi M, et al. Interaction between osteopontin on madin darby canine kidney cell membrane and calcium oxalate crystal. Urol Int. 1999;62:81–6.Google Scholar
  55. 55.
    Umekawa T, Kohri K, Kurita T, Hirota S, Nomura S, Kitamura Y. Expression of osteopontin messenger RNA in the rat kidney on experimental model of renal stone. Biochem Mol Biol Int. 1995;35:223–30.Google Scholar
  56. 56.
    Yagisawa T, Chandhoke PS, Fan J, Lucia S. Renal osteopontin expression in experimental urolithiasis. J Endourol. 1998;12:171–6.Google Scholar
  57. 57.
    Giachelli CM, Pichler R, Lombardi D, Denhardt DT, Alpers CE, Schwartz SM, et al. Osteopontin expression in angiotensin II-induced tubulointerstitial nephritis. Kidney Int. 1994;45:515–24.Google Scholar
  58. 58.
    Magil AB, Pichler RH, Johnson RJ. Osteopontin in chronic puromycin aminonucleoside nephrosis. J Am Soc Nephrol. 1997;8:1383–90.Google Scholar
  59. 59.
    Padanilam BJ, Martin DR, Hammerman MR. Insulin-like growth factor I-enhanced renal expression of osteopontin after acute ischemic injury in rats. Endocrinology. 1996;137:2133–40.Google Scholar
  60. 60.
    Nambi P, Gellai M, Wu HL, Prabhakar U. Upregulation of osteopontin in ischemia-induced renal failure in rats: a role for ET-1? Biochem Biophys Res Commun. 1997;241:212–4.Google Scholar
  61. 61.
    Persy VP, Verstrepen WA, Ysebaert DK, De Greef KE, De Broe ME. Differences in osteopontin up-regulation between proximal and distal tubules after renal ischemia/reperfusion. Kidney Int. 1999;56:601–11.Google Scholar
  62. 62.
    Eddy AA, Giachelli CM. Renal expression of genes that promote interstitial inflammation and fibrosis in rats with protein-overload proteinuria. Kidney Int. 1995;47:1546–57.Google Scholar
  63. 63.
    Diamond JR, Kees-Folts D, Ricardo SD, Pruznak A, Eufemio M. Early and persistent up-regulated expression of renal cortical osteopontin in experimental hydronephrosis. Am J Pathol. 1995;146:1455–66.Google Scholar
  64. 64.
    Kaneto H, Morrissey J, McCracken R, Reyes A, Klahr S. Osteopontin expression in the kidney during unilateral ureteral obstruction. Miner Electrolyte Metab. 1998;24:227–37.Google Scholar
  65. 65.
    Young BA, Burdmann EA, Johnson RJ, Alpers CE, Giachelli CM, Eng E, et al. Cellular proliferation and macrophage influx precede interstitial fibrosis in cyclosporine nephrotoxicity. Kidney Int. 1995;48:439–48.Google Scholar
  66. 66.
    Pichler RH, Franceschini N, Young BA, Hugo C, Andoh TF, Burdmann EA, et al. Pathogenesis of cyclosporine nephropathy: roles of angiotensin II and osteopontin. J Am Soc Nephrol. 1995;6:1186–96.Google Scholar
  67. 67.
    Eddy AA. Interstitial inflammation and fibrosis in rats with diet-induced hypercholesterolemia. Kidney Int. 1996;50:1139–49.Google Scholar
  68. 68.
    Lan HY, Yu XQ, Yang N, Nikolic-Paterson DJ, Mu W, Pichler R, et al. De novo glomerular osteopontin expression in rat crescentic glomerulonephritis. Kidney Int. 1998;53:136–45.Google Scholar
  69. 69.
    Abbate M, Zoja C, Corna D, Capitanio M, Bertani T, Remuzzi G. In progressive nephropathies, overload of tubular cells with filtered proteins translates glomerular permeability dysfunction into cellular signals of interstitial inflammation. J Am Soc Nephrol. 1998;9:1213–24.Google Scholar
  70. 70.
    Yu XQ, Wu LL, Huang XR, Yang N, Gilbert RE, Cooper ME, et al. Osteopontin expression in progressive renal injury in remnant kidney: role of angiotensin II. Kidney Int. 2000;58:1469–80.Google Scholar
  71. 71.
    Wuthrich RP, Fan X, Ritthaler T, Sibalic V, Yu DJ, Loffing J, et al. Enhanced osteopontin expression and macrophage infiltration in MRL-Fas (lpr) mice with lupus nephritis. Autoimmunity. 1998;28:139–50.Google Scholar
  72. 72.
    Lerner SP, Linehan WM, Rathmell WK. Kidney cancer. Urol Oncol. 2012;30:948–51.Google Scholar
  73. 73.
    Funakoshi T, Lee CH, Hsieh JJ. A systematic review of predictive and prognostic biomarkers for VEGF-targeted therapy in renal cell carcinoma. Cancer Treat Rev. 2014;40:533–47.Google Scholar
  74. 74.
    Liu H, Chen A, Guo F, Yuan L. Influence of osteopontin short hairpin RNA on the proliferation and invasion of human renal cancer cells. J Huazhong Univ Sci Technol Med Sci. 2010;30:61–8.Google Scholar
  75. 75.
    Matusan K, Dordevic G, Stipic D, Mozetic V, Lucin K. Osteopontin expression correlates with prognostic variables and survival in clear cell renal cell carcinoma. J Surg Oncol. 2006;94:325–31.Google Scholar
  76. 76.
    Rabjerg M, Bjerregaard H, Halekoh U, Jensen BL, Walter S, Marcussen N. Molecular characterization of clear cell renal cell carcinoma identifies CSNK2A1, SPP1 and DEFB1 as promising novel prognostic markers. APMIS. 2016;124:372–83.Google Scholar
  77. 77.
    Wai PY, Kuo PC. Osteopontin: regulation in tumor metastasis. Cancer Metastasis Rev. 2008;27:103–18.Google Scholar
  78. 78.
    Lund SA, Giachelli CM, Scatena M. The role of osteopontin in inflammatory processes. J Cell Commun Signal. 2009;3:311–22.Google Scholar
  79. 79.
    Magistroni R, D’Agati VD, Appel GB, Kiryluk K. New developments in the genetics, pathogenesis, and therapy of IgA nephropathy. Kidney Int. 2015;88:974–89.Google Scholar
  80. 80.
    Sano N, Kitazawa K, Sugisaki T. Localization and roles of CD44, hyaluronic acid and osteopontin in IgA nephropathy. Nephron. 2001;89:416–21.Google Scholar
  81. 81.
    Wasilewska A, Taranta-Janusz K, Kuroczycka-Saniutycz E, Zoch-Zwierz W. Urinary OPN excretion in children with glomerular proteinuria. Adv Med Sci. 2011;56:193–9.Google Scholar
  82. 82.
    Thomas ME, Harris KP, Walls J, Furness PN, Brunskill NJ. Fatty acids exacerbate tubulointerstitial injury in protein-overload proteinuria. Am J Physiol Ren Physiol. 2002;283:F640-7.Google Scholar
  83. 83.
    Gang X, Ueki K, Kon S, Maeda M, Naruse T, Nojima Y. Reduced urinary excretion of intact osteopontin in patients with IgA nephropathy. Am J Kidney Dis. 2001;37:374–9.Google Scholar
  84. 84.
    Kaimori JY, Takenaka M, Nagasawa Y, Nakajima H, Izumi M, Akagi Y, et al. Quantitative analyses of osteopontin mRNA expression in human proximal tubules isolated from renal biopsy tissue sections of minimal change nephrotic syndrome and IgA glomerulonephropathy patients. Am J Kidney Dis. 2002;39:948–57.Google Scholar
  85. 85.
    Kitagori K, Yoshifuji H, Oku T, Sasaki C, Miyata H, Mori KP, et al. Cleaved form of osteopontin in urine as a clinical marker of lupus nephritis. PLoS One. 2016;11:e0167141.Google Scholar
  86. 86.
    Wenderfer SE, Gaut JP. Glomerular diseases in children. Adv Chronic Kidney Dis. 2017;24:364–71.Google Scholar
  87. 87.
    Bertelli R, Bonanni A, Caridi G, Canepa A, Ghiggeri GM. Molecular and cellular mechanisms for proteinuria in minimal change disease. Front Med (Lausanne). 2018;5:170.Google Scholar
  88. 88.
    Mezzano SA, Barría M, Droguett MA, Burgos ME, Ardiles LG, Flores C, et al. Tubular NF-kappaB and AP-1 activation in human proteinuric renal disease. Kidney Int. 2001;60:1366–77.Google Scholar
  89. 89.
    Cattran DC, Brenchley PE. Membranous nephropathy: integrating basic science into improved clinical management. Kidney Int. 2017;91:566–74.Google Scholar
  90. 90.
    Hoxha E, von Haxthausen F, Wiech T, Stahl RAK. Membranous nephropathy-one morphologic pattern with different diseases. Pflugers Arch. 2017;469:989–96.Google Scholar
  91. 91.
    Glassock RJ. Human idiopathic membranous nephropathy—a mystery solved? N Engl J Med. 2009;361:81–3.Google Scholar
  92. 92.
    Couser WG. Basic and translational concepts of immune-mediated glomerular diseases. J Am Soc Nephrol. 2012;23:381–99.Google Scholar
  93. 93.
    Mezzano SA, Droguett MA, Burgos ME, Ardiles LG, Aros CA, Caorsi I, et al. Overexpression of chemokines, fibrogenic cytokines, and myofibroblasts in human membranous nephropathy. Kidney Int. 2000;57:147–58.Google Scholar
  94. 94.
    Kotzin BL. Systemic lupus erythematosus. Cell. 1996;85:303–6.Google Scholar
  95. 95.
    Mills JA. Systemic lupus erythematosus. N Engl J Med. 1994;330:1871–9.Google Scholar
  96. 96.
    Giles BM, Boackle SA. Linking complement and anti-dsDNA antibodies in the pathogenesis of systemic lupus erythematosus. Immunol Res. 2013;55:10–21.Google Scholar
  97. 97.
    Marks SD, Tullus K. Autoantibodies in systemic lupus erythematosus. Pediatr Nephrol. 2012;27:1855–68.Google Scholar
  98. 98.
    Ikeuchi H, Hiromura K, Kayakabe K, Tshilela KA, Uchiyama K, Hamatani H, et al. Renal outcomes in mixed proliferative and membranous lupus nephritis (class III/IV + V): a long-term observational study. Mod Rheumatol. 2016;26:908–13.Google Scholar
  99. 99.
    Kaleta B. Role of osteopontin in systemic lupus erythematosus. Arch Immunol Ther Exp. 2014;62:475–82.Google Scholar
  100. 100.
    Wong CK, Lit LC, Tam LS, Li EK, Lam CW. Elevation of plasma osteopontin concentration is correlated with disease activity in patients with systemic lupus erythematosus. Rheumatology. 2005;44:602–6.Google Scholar
  101. 101.
    Ma R, Jiang W, Li Z, Sun Y, Wei Z. Intrarenal macrophage infiltration induced by T cells is associated with podocyte injury in lupus nephritis patients. Lupus. 2016;25:1577–86.Google Scholar
  102. 102.
    Salimi S, Noora M, Nabizadeh S, Rezaei M, Shahraki H, Milad MK, et al. Association of the osteopontin rs1126616 polymorphism and a higher serum osteopontin level with lupus nephritis. Biomed Rep. 2016;4:355–60.Google Scholar
  103. 103.
    Forton AC, Petri MA, Goldman D, Sullivan KE. An osteopontin (SPP1) polymorphism is associated with systemic lupus erythematosus. Hum Mutat. 2002;19:459.Google Scholar
  104. 104.
    Xu AP, Liang YY, Lü J, Liang YY, Li JG, Lai DY, et al. Association of osteopontin gene polymorphism with lupus nephritis in Chinese Han population. Chin Med J (Engl). 2007;120:2124–8.Google Scholar
  105. 105.
    Lim AKH. Diabetic nephropathy–complications and treatment. Int J Nephrol Renovasc Dis. 2014;7:361–81.Google Scholar
  106. 106.
    Yamaguchi H, Igarashi M, Hirata A, Tsuchiya H, Sugiyama K, Morita Y, et al. Progression of diabetic nephropathy enhances the plasma osteopontin level in type 2 diabetic patients. Endocr J. 2004;51:499–504.Google Scholar
  107. 107.
    Yan X, Sano M, Lu L, Wang W, Zhang Q, Zhang R, et al. Plasma concentrations of osteopontin, but not thrombin-cleaved osteopontin, are associated with the presence and severity of nephropathy and coronary artery disease in patients with type 2 diabetes mellitus. Cardiovasc Diabetol. 2010;9:70.Google Scholar
  108. 108.
    Gordin D, Forsblom C, Panduru NM, Thomas MC, Bjerre M, Soro-Paavonen A, et al. Osteopontin is a strong predictor of incipient diabetic nephropathy, cardiovascular disease, and all-cause mortality in patients with type 1 diabetes. Diabetes Care. 2014;37:2593–600.Google Scholar
  109. 109.
    Talat MA, Sherief LM, El-Saadany HF, Rass AA, Saleh RM, Sakr MM. The role of osteopontin in the pathogenesis and complications of type 1 diabetes mellitus in children. J Clin Res Pediatr Endocrinol. 2016;8:399–404.Google Scholar
  110. 110.
    Cheema BS, Iyengar S, Ahluwalia TS, Kohli HS, Sharma R, Shah VN, et al. Association of an Osteopontin gene promoter polymorphism with susceptibility to diabetic nephropathy in Asian Indians. Clin Chim Acta. 2012;413:1600–4.Google Scholar
  111. 111.
    Nicholas SB, Liu J, Kim J, Ren Y, Collins AR, Nguyen L, et al. Critical role for osteopontin in diabetic nephropathy. Kidney Int. 2010;77:588–600.Google Scholar
  112. 112.
    Giacopelli F, Marciano R, Pistorio A, Catarsi P, Canini S, Karsenty G, et al. Polymorphisms in the osteopontin promoter affect its transcriptional activity. Physiol Genom. 2004;20:87–96.Google Scholar
  113. 113.
    Cheema BS, Iyengar S, Sharma R, Kohli HS, Bhansali A, Khullar M. Association between osteopontin promoter gene polymorphisms and haplotypes with risk of diabetic nephropathy. J Clin Med. 2015;4:1281–92.Google Scholar
  114. 114.
    Abecassis M, Bartlett ST, Collins AJ, Davis CL, Delmonico FL, Friedewald JJ, et al. Kidney transplantation as primary therapy for end-stage renal disease: a National Kidney Foundation/Kidney Disease Outcomes Quality Initiative (NKF/KDOQI™) conference. Clin J Am Soc Nephrol. 2008;3:47–80.Google Scholar
  115. 115.
    Alchi B, Nishi S, Kondo D, Kaneko Y, Matsuki A, Imai N, et al. Osteopontin expression in acute renal allograft rejection. Kidney Int. 2005;67:886–96.Google Scholar
  116. 116.
    Rouschop KM, Roelofs JJ, Sylva M, Rowshani AT, Ten Berge IJ, Weening JJ, et al. Renal expression of CD44 correlates with acute renal allograft rejection. Kidney Int. 2006;70:1127–34.Google Scholar
  117. 117.
    Jin ZK, Tian PX, Wang XZ, Xue WJ, Ding XM, Zheng J, et al. Kidney injury molecule-1 and osteopontin: new markers for prediction of early kidney transplant rejection. Mol Immunol. 2013;54:457–64.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Clinical Immunology, Transplantation InstituteMedical University of WarsawWarsawPoland

Personalised recommendations