Inflammation Research

, Volume 68, Issue 1, pp 47–57 | Cite as

Pre-eclampsia: the role of highly active antiretroviral therapy and immune markers

  • Wendy N. PhoswaEmail author
  • Thajasvarie Naicker
  • Veron Ramsuran
  • Jagidesa Moodley


Purpose of the review

This review highlights the role immune cells and markers such as natural killer (NK) cells, cytokines and human leukocyte antigen (HLA-G) play in predisposing HIV-infected women who are on HAART to develop PE, thus contributing to a better understanding and early diagnosis of PE with a subsequent reduction in maternal foetal and neonatal deaths.

Recent findings

Pregnant women infected with the Human Immunodeficiency Virus (HIV) have a 25% risk of mother to child transmission. This risk, however, decreases to 2% if the women is on treatment. Highly active antiretroviral therapy (HAART) is the recommended treatment for both pregnant and non-pregnant women infected with HIV. Treatment with HAART is reported to potentiate predisposition to the development of hypertensive disorders of pregnancy such as pre-eclampsia (PE). Pre-eclampsia accounts for 7–10% of abnormal pregnancies worldwide. Studies demonstrate that pregnant women with HIV have PE at lower frequencies than uninfected women, however, the converse is observed upon HAART initiation. HIV-infected women on HAART exhibit a greater tendency to develop PE, emanating from immune reconstitution induced by HAART.


There is paucity of information as to the pathogenesis of PE upon HAART initiation and there are, therefore, controversial data as to whether HAART predisposes women to a lower, equal or higher risk of PE development compared to the general population, further investigations on the impact of HIV infection and HAART on the immune response and rate of PE development in HIV infected pregnant women are urgently needed.


Highly active antiretroviral therapy Human immunodeficiency virus Immune markers Pre-eclampsia Pregnancy 


Compliance with ethical standards

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.


  1. 1.
    Loewendorf AI, Nguyen TA, Yesayan MN, Kahn DA. Preeclampsia is characterized by fetal NK cell activation and a reduction in regulatory T cells. Am J Reprod Immunol. 2015;74:258–67.Google Scholar
  2. 2.
    Duhig KE, Shennan AH. Recent advances in the diagnosis and management of pre-eclampsia. F1000prime Rep. 2015;7:24.Google Scholar
  3. 3.
    Saleem S, McClure EM, Goudar SS, Patel A, Esamai F, Garces A, et al. A prospective study of maternal, fetal and neonatal deaths in low-and middle-income countries. Bull World Health Organ. 2014;92:605–12.Google Scholar
  4. 4.
    Sibai B, Dekker G, Kupferminc M. Pre-eclampsia. The Lancet. 2005;365:785–99.Google Scholar
  5. 5.
    Steegers EA, von Dadelszen P, Duvekot JJ, Pijnenborg R. Pre-eclampsia. The Lancet. 2010;376:631–44.Google Scholar
  6. 6.
    English FA, Kenny LC, McCarthy FP. Risk factors and effective management of preeclampsia. Integr Blood Press Control. 2015;8:7.Google Scholar
  7. 7.
    Magee LA, Kenny L, Karumanchi SA, McCarthy F, Saito S, Hall DR, et al. The hypertensive disorders of pregnancy: ISSHP classification, diagnosis and management recommendations for international practice 2018. Pregnancy Hypertens. 2018;72:24–43.Google Scholar
  8. 8.
    Chaiworapongsa T, Chaemsaithong P, Yeo L, Romero R. Pre-eclampsia part 1: current understanding of its pathophysiology. Nat Rev Nephrol. 2014;10:466.Google Scholar
  9. 9.
    Lisonkova S, Joseph K. Incidence of preeclampsia: risk factors and outcomes associated with early-versus late-onset disease. Am J Obstet Gynecol. 2013;209:544 (e1–e12).Google Scholar
  10. 10.
    Lisonkova S, Sabr Y, Mayer C, Young C, Skoll A, Joseph K. Maternal morbidity associated with early-onset and late-onset preeclampsia. Obstet Gynecol. 2014;124:771–81.Google Scholar
  11. 11.
    Eiland E, Nzerue C, Faulkner M. Preeclampsia 2012. J Pregnancy. 2012;2012:586578. Scholar
  12. 12.
    Duckitt K, Harrington D. Risk factors for pre-eclampsia at antenatal booking: systematic review of controlled studies. BMJ. 2005;330:565.Google Scholar
  13. 13.
    Dekker GA, Sibai BM. Etiology and pathogenesis of preeclampsia: current concepts. Am J Obstet Gynecol. 1998;179:1359–75.Google Scholar
  14. 14.
    Landi B, Bezzeccheri V, Guerra B, Piemontese M, Cervi F, Cecchi L, et al. HIV infection in pregnancy and the risk of gestational hypertension and preeclampsia. World J Cardiovasc Dis. 2014;4:257.Google Scholar
  15. 15.
    Maharaj NR, Phulukdaree A, Nagiah S, Ramkaran P, Tiloke C, Chuturgoon AA. Pro-inflammatory cytokine levels in HIV infected and uninfected pregnant women with and without preeclampsia. PLoS One. 2017;12:e0170063.Google Scholar
  16. 16.
    Kalumba V, Moodley J, Naidoo T. Is the prevalence of pre-eclampsia affected by HIV/AIDS? A retrospective case-control study: cardiovascular topics. Cardiovasc J Afr. 2013;24:24–7.Google Scholar
  17. 17.
    Sebitloane HM, Moodley J, Sartorius B. Associations between HIV, highly active anti-retroviral therapy, and hypertensive disorders of pregnancy among maternal deaths in South Africa 2011–2013. Int J Gynecol Obstet. 2017;136:195–9.Google Scholar
  18. 18.
    Myer L, Carter RJ, Katyal M, Toro P, El-Sadr WM, Abrams EJ. Impact of antiretroviral therapy on incidence of pregnancy among HIV-infected women in Sub-Saharan Africa: a cohort study. PLoS Med. 2010;7:e1000229.Google Scholar
  19. 19.
    Organization WH. Global summary of the AIDS epidemic 2014. Hämtad från. (2013).
  20. 20.
    Ono E, dos Santos A, Machado DM, Succi RCdM, Amed AM, Salomao R, et al. Immunologic features of HIV-1-infected women on HAART at delivery. Cytom Part B: Clin Cytom. 2008;74:236–43.Google Scholar
  21. 21.
    Townsend CL, Tookey PA, Newell M-L, Cortina-Borja M. Antiretroviral therapy in pregnancy: balancing the risk of preterm delivery with prevention of mother-to-child HIV transmission. Antivir Ther. 2010;15:775.Google Scholar
  22. 22.
    Browne JL, Schrier VJ, Grobbee DE, Peters SA, Klipstein-Grobusch K. HIV, antiretroviral therapy, and hypertensive disorders in pregnancy: a systematic review and meta-analysis. JAIDS J Acquir Immune Defic Syndr. 2015;70:91–8.Google Scholar
  23. 23.
    Sansone M, Sarno L, Saccone G, Berghella V, Maruotti GM, Migliucci A, et al. Risk of preeclampsia in human immunodeficiency virus–infected pregnant women. Obstet Gynecol. 2016;127:1027–32.Google Scholar
  24. 24.
    Stratton P, Tuomala RE, Abboud R, Rodriguez E, Rich K, Pitt J, et al. Obstetric and newborn outcomes in a cohort of HIV-infected pregnant women: a report of the women and infants transmission study. J Acquir Immune Defic Syndr Hum Retrovirology. 1999;20:179–86.Google Scholar
  25. 25.
    Wimalasundera R, Larbalestier N, Smith J, De Ruiter A, Thom SM, Hughes A, et al. Pre-eclampsia, antiretroviral therapy, and immune reconstitution. The Lancet. 2002;360:1152–4.Google Scholar
  26. 26.
    Kourtis AP, Bansil P, McPheeters M, Meikle SF, Posner SF, Jamieson DJ. Hospitalizations of pregnant HIV-infected women in the USA prior to and during the era of HAART, 1994–2003. AIDS. 2006;20:1823–31.Google Scholar
  27. 27.
    Haeri S, Shauer M, Dale M, Leslie J, Baker AM, Saddlemire S, et al. Obstetric and newborn infant outcomes in human immunodeficiency virus-infected women who receive highly active antiretroviral therapy. Am J Obstet Gynecol. 2009;201:315, e1–e5.Google Scholar
  28. 28.
    Boer K, Nellen J, Patel D, Timmermans S, Tempelman C, Wibaut M, et al. The AmRo study: pregnancy outcome in HIV-1-infected women under effective highly active antiretroviral therapy and a policy of vaginal delivery. BJOG: Int J Obstet Gynaecol. 2007;114:148–55.Google Scholar
  29. 29.
    Mattar R, Amed AM, Lindsey PC, Sass N, Daher S. Preeclampsia and HIV infection. Eur J Obstet Gynecol Reprod Biol. 2004;117:240–1.Google Scholar
  30. 30.
    Boyajian T, Shah PS, Murphy KE. Risk of preeclampsia in HIV-positive pregnant women receiving HAART: a matched cohort study. J Obstet Gynaecol Can. 2012;34:136–41.Google Scholar
  31. 31.
    Study EC. Pregnancy-related changes in the longer-term management of HIV-infected women in Europe. Eur J Obstet Gynecol Reprod Biol. 2003;111:3–8.Google Scholar
  32. 32.
    Suy A, Martínez E, Coll O, Lonca M, Palacio M, de Lazzari E, et al. Increased risk of pre-eclampsia and fetal death in HIV-infected pregnant women receiving highly active antiretroviral therapy. AIDS. 2006;20:59–66.Google Scholar
  33. 33.
    Poon L, Kametas N, Chelemen T, Leal A, Nicolaides K. Maternal risk factors for hypertensive disorders in pregnancy: a multivariate approach. J Hum Hypertens. 2010;24:104.Google Scholar
  34. 34.
    Health Do. National antenatal sentinel HIV and syphilis prevalence survey in South Africa. Department of Health Pretoria; 2011.Google Scholar
  35. 35.
    Moodley J, Onyangunga O, Maharaj N. Hypertensive disorders in primigravid black South African women: a one-year descriptive analysis. Hypertens Pregnancy. 2016;35:529–35.Google Scholar
  36. 36.
    Mawson AR. Effects of antiretroviral therapy on occurrence of pre-eclampsia. The Lancet. 2003;361:347–8.Google Scholar
  37. 37.
    Redman C. Pre-eclampsia and the placenta. Placenta. 1991;12:301–8.Google Scholar
  38. 38.
    Eastabrook G, Brown M, Sargent I. The origins and end-organ consequence of pre-eclampsia. Best Pract Res Clin Obstet Gynaecol. 2011;25:435–47.Google Scholar
  39. 39.
    Palei AC, Spradley FT, Warrington JP, George EM, Granger JP. Pathophysiology of hypertension in pre-eclampsia: a lesson in integrative physiology. Acta Physiol. 2013;208:224–33.Google Scholar
  40. 40.
    Mol BW, Roberts CT, Thangaratinam S, Magee LA, De Groot CJ, Hofmeyr GJ. Pre-eclampsia. The Lancet. 2016;387:999–1011.Google Scholar
  41. 41.
    Ishitani A, Sageshima N, Hatake K. The involvement of HLA-E and-F in pregnancy. J Reprod Immunol. 2006;69:101–13.Google Scholar
  42. 42.
    Hviid TVF. HLA-G in human reproduction: aspects of genetics, function and pregnancy complications. Hum Reprod Updat. 2005;12:209–32.Google Scholar
  43. 43.
    Sargent IL, Borzychowski AM, Redman CW. Immunoregulation in normal pregnancy and pre-eclampsia: an overview. Reprod Biomed Online. 2006;13:680–6.Google Scholar
  44. 44.
    Tabiasco J, Rabot M, Aguerre-Girr M, El Costa H, Berrebi A, Parant O, et al. Human decidual NK cells: unique phenotype and functional properties—a review. Placenta. 2006;27:34–9.Google Scholar
  45. 45.
    Ahn H, Park J, Gilman-Sachs A, Kwak-Kim J. Immunologic characteristics of preeclampsia, a comprehensive review. Am J Reprod Immunol. 2011;65:377–94.Google Scholar
  46. 46.
    Goldman-Wohl D, Ariel I, Greenfield C, Hochner-Celnikier D, Cross J, Fisher S, et al. Lack of human leukocyte antigen-G expression in extravillous trophoblasts is associated with pre-eclampsia. Mol Hum Reprod. 2000;6:88–95.Google Scholar
  47. 47.
    Hara N, Fujii T, Yamashita T, Kozuma S, Okai T, Taketani Y. Altered expression of human leukocyte antigen G (HLA-G) on extravillous trophoblasts in preeclampsia: immunohistological demonstration with anti-HLA-G specific antibody “87G” and anti-cytokeratin antibody “CAM5. 2”. Am J Reprod Immunol. 1996;36:349–58.Google Scholar
  48. 48.
    Novotny S, Wallace K, Herse F, Moseley J, Darby M, Heath J, et al. CD4+ T cells play a critical role in mediating hypertension in response to placental ischemia. J Hypertens. 2013;2:14873. Scholar
  49. 49.
    Paul P, Cabestre FA, Lefebvre S, Khalil-Daher I, Vazeux G, Quiles RMM, et al. Identification of HLA-G7 as a new splice variant of the HLA-G mRNA and expression of soluble HLA-G5,-G6, and-G7 transcripts in human transfected cells. Hum Immunol. 2000;61:1138–49.Google Scholar
  50. 50.
    Rouas-Freiss N, Marchal RE, Kirszenbaum M, Dausset J, Carosella ED. The α1 domain of HLA-G1 and HLA-G2 inhibits cytotoxicity induced by natural killer cells: is HLA-G the public ligand for natural killer cell inhibitory receptors? Proc Nat Acad Sci. 1997;94:5249–54.Google Scholar
  51. 51.
    Dahl M, Hviid TVF. Human leucocyte antigen class Ib molecules in pregnancy success and early pregnancy loss. Hum Reprod Update. 2011;18:92–109.Google Scholar
  52. 52.
    Moreau P, Adrian-Cabestre F, Menier C, Guiard V, Gourand L, Dausset J, et al. IL-10 selectively induces HLA-G expression in human trophoblasts and monocytes. Int Immunol. 1999;11:803–11.Google Scholar
  53. 53.
    Cabello A, Rivero A, Garcia MJ, Lozano JM, Torre-Cisneros J, González R, et al. HAART induces the expression of HLA-G on peripheral monocytes in HIV-1 infected individuals. Hum Immunol. 2003;64:1045–9.Google Scholar
  54. 54.
    Lozano JM, González R, Kindelán JM, Rouas-Freiss N, Caballos R, Dausset J, et al. Monocytes and T lymphocytes in HIV-1-positive patients express HLA-G molecule. AIDS. 2002;16:347–51.Google Scholar
  55. 55.
    Onno M, Pangault C, Le Friec G, Guilloux V, André P, Fauchet R. Modulation of HLA-G antigens expression by human cytomegalovirus: specific induction in activated macrophages harboring human cytomegalovirus infection. J Immunol. 2000;164:6426–34.Google Scholar
  56. 56.
    Derrien M, Pizzato N, Dolcini G, Menu E, Chaouat G, Lenfant F, et al. Human immunodeficiency virus 1 downregulates cell surface expression of the non-classical major histocompatibility class I molecule HLA-G1. J Gen Virol. 2004;85:1945–54.Google Scholar
  57. 57.
    Lenfant F, Pizzato N, Liang S, Davrinche C, Le Bouteiller P, Horuzsko A. Induction of HLA-G-restricted human cytomegalovirus pp65 (UL83)-specific cytotoxic T lymphocytes in HLA-G transgenic mice. J Gen Virol. 2003;84:307–17.Google Scholar
  58. 58.
    Donaghy L, Gros F, Amiot L, Mary C, Maillard A, Guiguen C, et al. Elevated levels of soluble non-classical major histocompatibility class I molecule human leucocyte antigen (HLA)-G in the blood of HIV-infected patients with or without visceral leishmaniasis. Clin Exp Immunol. 2007;147:236–40.Google Scholar
  59. 59.
    Murdaca G, Contini P, Setti M, Cagnati P, Lantieri F, Indiveri F, et al. Behavior of non-classical soluble HLA class G antigens in human immunodeficiency virus 1-infected patients before and after HAART: comparison with classical soluble HLA-A,-B,-C antigens and potential role in immune-reconstitution. Clin Immunol. 2009;133:238–44.Google Scholar
  60. 60.
    Aluvihare VR, Kallikourdis M, Betz AG. Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol. 2004;5:266.Google Scholar
  61. 61.
    Zenclussen AC. CD4 + CD25 + T regulatory cells in murine pregnancy. J Reprod Immunol. 2005;65:101–10.Google Scholar
  62. 62.
    Mor G, Cardenas I. The immune system in pregnancy: a unique complexity. Am J Reprod Immunol. 2010;63:425–33.Google Scholar
  63. 63.
    Racicot K, Kwon JY, Aldo P, Silasi M, Mor G. Understanding the complexity of the immune system during pregnancy. Am J Reprod Immunol. 2014;72:107–16.Google Scholar
  64. 64.
    Bulmer JN, Denise P, Ritson A. Immunoregulatory cells in human decidua: morphology, immunohistochemistry and function. Reprod Nutr Dév. 1988;28:1599–614.Google Scholar
  65. 65.
    Mor G, Straszewski-Chavez SL, Abrahams VM. Macrophage-trophoblast interactions. Placenta: Springer; 2006. pp. 149–63.Google Scholar
  66. 66.
    King A, Burrows T, Verma S, Hiby S, Loke Y. Human uterine lymphocytes. Hum Reprod Update. 1998;4:480–5.Google Scholar
  67. 67.
    Angelo LS, Banerjee PP, Monaco-Shawver L, Rosen JB, Makedonas G, Forbes LR, et al. Practical NK cell phenotyping and variability in healthy adults. Immunol Res. 2015;62:341–56.Google Scholar
  68. 68.
    Giuliani E, Parkin KL, Lessey BA, Young SL, Fazleabas AT. Characterization of uterine NK cells in women with infertility or recurrent pregnancy loss and associated endometriosis. Am J Reprod Immunol. 2014;72:262–9.Google Scholar
  69. 69.
    Lash G, Robson S, Bulmer J. Functional role of uterine natural killer (uNK) cells in human early pregnancy decidua. Placenta. 2010;31:87–92.Google Scholar
  70. 70.
    Moffett-King A. Natural killer cells and pregnancy. Nat Rev Immunol. 2002;2:656–63.Google Scholar
  71. 71.
    Hanna J, Goldman-Wohl D, Hamani Y, Avraham I, Greenfield C, Natanson-Yaron S, et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med. 2006;12:1065.Google Scholar
  72. 72.
    Mandal A, Viswanathan C. Natural killer cells: in health and disease. Hematol/Oncol Stem Cell Ther. 2015;8:47–55.Google Scholar
  73. 73.
    King A, Allan DS, Bowen M, Powis SJ, Joseph S, Verma S, et al. HLA-E is expressed on trophoblast and interacts with CD94/NKG2 receptors on decidual NK cells. Eur J Immunol. 2000;30:1623–31.Google Scholar
  74. 74.
    Wu J, Lanier LL. Natural killer cells and cancer. Adv Cancer Res. 2003;90:127–56.Google Scholar
  75. 75.
    Cerwenka A, Lanier LL. Natural killer cells, viruses and cancer. Nat Rev Immunol. 2001;1:41–9.Google Scholar
  76. 76.
    Bachmayer N, Sohlberg E, Sundström Y, Hamad RR, Berg L, Bremme K, et al. Women with pre-eclampsia have an altered NKG2A and NKG2C receptor expression on peripheral blood natural killer cells. Am J Reprod Immunol. 2009;62:147–57.Google Scholar
  77. 77.
    Poli A, Michel T, Thérésine M, Andres E, Hentges F, Zimmer J. CD56bright natural killer (NK) cells: an important NK cell subset. Immunology. 2009;126:458–65.Google Scholar
  78. 78.
    Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol. 2001;22:633–40.Google Scholar
  79. 79.
    Ferlazzo G, Thomas D, Lin S-L, Goodman K, Morandi B, Muller WA, et al. The abundant NK cells in human secondary lymphoid tissues require activation to express killer cell Ig-like receptors and become cytolytic. J Immunol. 2004;172:1455–62.Google Scholar
  80. 80.
    Martín-Fontecha A, Thomsen LL, Brett S, Gerard C, Lipp M, Lanzavecchia A, et al. Induced recruitment of NK cells to lymph nodes provides IFN-γ for T H 1 priming. Nat Immunol. 2004;5:1260.Google Scholar
  81. 81.
    Mocikat R, Braumüller H, Gumy A, Egeter O, Ziegler H, Reusch U, et al. Natural killer cells activated by MHC class I low targets prime dendritic cells to induce protective CD8 T cell responses. Immunity. 2003;19:561–9.Google Scholar
  82. 82.
    Mela CM, Goodier MR. The contribution of cytomegalovirus to changes in NK cell receptor expression in HIV-1-infected individuals. J Infect Dis. 2007;195:158–9.Google Scholar
  83. 83.
    Conde-Agudelo A, Villar J, Lindheimer M. Maternal infection and risk of preeclampsia: systematic review and metaanalysis. Am J Obstet Gynecol. 2008;198:7–22.Google Scholar
  84. 84.
    Kottilil S. Natural killer cells in HIV-1 infection: role of NK cell-mediated non-cytolytic mechanisms in pathogenesis of HIV-1 infection. Indian J Exp Biol. 2003;41:1219–25.Google Scholar
  85. 85.
    Laresgoiti-Servitje E, Gómez-López N, Olson DM. An immunological insight into the origins of pre-eclampsia. Hum Reprod Update. 2010;16:510–24.Google Scholar
  86. 86.
    Wegmann TG, Lin H, Guilbert L, Mosmann TR. Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon? Immunol Today. 1993;14:353–6.Google Scholar
  87. 87.
    Hu W, Wang H, Wang Z, Huang H, Dong M. Elevated serum levels of interleukin-15 and interleukin-16 in preeclampsia. J Reprod Immunol. 2007;73:166–71.Google Scholar
  88. 88.
    Olusi SO, Diejomaoh M, Omu A, Abdulaziz A, Prabha K, George S. Interleukins in preeclampsia. Ann Saudi Med. 2000;20:4–7.Google Scholar
  89. 89.
    Adrián TR, Ruiz A, Vílchez RM, Estévez J, Atencio R. Interleukin-2 receptor serum concentrations in normal pregnancy and pre-eclampsia. Investig Clin. 2002;43:73–78.Google Scholar
  90. 90.
    Greer IA, Lyall F, Perera T, Boswell F, Macara LM. Increased concentrations of cytokines interleukin-6 and interleukin-1 receptor antagonist in plasma of women with preeclampsia: a mechanism for endothelial dysfunction? Obstet Gynecol. 1994;84:937–40.Google Scholar
  91. 91.
    Hentschke MR, Lucas LS, Krauspenhar B, Felix RP, Sussela AO, Berlesi F, et al. Increased levels of the soluble receptor of Interleukin-6 in patients with preeclampsia compared to normotensive pregnant women. Sci Medica. 2014;23:213–8.Google Scholar
  92. 92.
    Udenze I, Amadi C, Awolola N, Makwe CC. The role of cytokines as inflammatory mediators in preeclampsia. Pan Afr Med J. 2015;20(1).Google Scholar
  93. 93.
    Ozler A, Turgut A, Sak M, Evsen M, Soydinc H, Evliyaoglu O, et al. Serum levels of neopterin, tumor necrosis factor-alpha and Interleukin-6 in preeclampsia: relationship with disease severity. Eur Rev Med Pharmacol Sci. 2012;16:1707–12.Google Scholar
  94. 94.
    Arriaga-Pizano L, Jimenez-Zamudio L, Vadillo-Ortega F, Martinez-Flores A, Herrerias-Canedo T, Hernandez-Guerrero C. The predominant Th1 cytokine profile in maternal plasma of preeclamptic women is not reflected in the choriodecidual and fetal compartments. J Soc Gynecol Investig. 2005;12:335–42.Google Scholar
  95. 95.
    Mansouri R, Akbari F, Vodjgani M, Mahboudi F, Kalantar F, Mirahmadian M. Serum cytokines profiles in Iranian patients with preeclampsia. Iran J Immunol. 2007;4:179–85.Google Scholar
  96. 96.
    Molvarec A, Szarka A, Walentin S, Bekő G, Karádi I, Prohászka Z, et al. Serum leptin levels in relation to circulating cytokines, chemokines, adhesion molecules and angiogenic factors in normal pregnancy and preeclampsia. Reprod Biol Endocrinol. 2011;9:124.Google Scholar
  97. 97.
    Szarka A, Rigó J, Lázár L, Bekő G, Molvarec A. Circulating cytokines, chemokines and adhesion molecules in normal pregnancy and preeclampsia determined by multiplex suspension array. BMC Immunol. 2010;11:59.Google Scholar
  98. 98.
    Conrad KP, Miles TM, Benyo DF. Circulating levels of immunoreactive cytokines in women with preeclampsia. Am J Reprod Immunol. 1998;40:102–11.Google Scholar
  99. 99.
    Hennessy A, Pilmore H, Simmons L, Painter D. A deficiency of placental IL-10 in preeclampsia. J Immunol. 1999;163:3491–5.Google Scholar
  100. 100.
    Makris A, Xu B, Yu B, Thornton C, Hennessy A. Placental deficiency of interleukin-10 (IL-10) in preeclampsia and its relationship to an IL10 promoter polymorphism. Placenta. 2006;27:445–51.Google Scholar
  101. 101.
    Sharma A, Satyam A, Sharma JB. Leptin, IL-10 and inflammatory markers (TNF-α, IL-6 and IL-8) in pre-eclamptic, normotensive pregnant and healthy non-pregnant women. Am J Reprod Immunol. 2007;58:21–30.Google Scholar
  102. 102.
    Borekci B, Aksoy H, Al RA, Demircan B, Kadanali S. Maternal serum interleukin-10, interleukin-2 and interleukin-6 in pre-eclampsia and eclampsia. Am J Reprod Immunol. 2007;58:56–64.Google Scholar
  103. 103.
    Chaouat G, Meliani AA, Martal J, Raghupathy R, Elliott J, Elliot J, et al. IL-10 prevents naturally occurring fetal loss in the CBA x DBA/2 mating combination, and local defect in IL-10 production in this abortion-prone combination is corrected by in vivo injection of IFN-tau. J Immunol. 1995;154:4261–8.Google Scholar
  104. 104.
    Aschkenazi S, Straszewski S, Verwer KM, Foellmer H, Rutherford T, Mor G. Differential regulation and function of the Fas/Fas ligand system in human trophoblast cells. Biol Reprod. 2002;66:1853–61.Google Scholar
  105. 105.
    Orange S, Rasko JE, Thompson JF, Vaughan J, Olive E, Pedler M, et al. Interleukin-10 regulates arterial pressure in early primate pregnancy. Cytokine. 2005;29:176–85.Google Scholar
  106. 106.
    Teran E, Escudero C, Moya W, Flores M, Vallance P, Lopez-Jaramillo P. Elevated C-reactive protein and pro-inflammatory cytokines in Andean women with pre-eclampsia. Int J Gynecol Obstet. 2001;75:243–9.Google Scholar
  107. 107.
    Darmochwal-Kolarz D, Leszczynska-Gorzelak B, Rolinski J, Oleszczuk J. T helper 1-and T helper 2-type cytokine imbalance in pregnant women with pre-eclampsia. Eur J Obstet Gynecol Reprod Biol. 1999;86:165–70.Google Scholar
  108. 108.
    Wilczyński JR, Tchórzewski H, Banasik M, Głowacka E, Wieczorek A, Lewkowicz P, et al. Lymphocyte subset distribution and cytokine secretion in third trimester decidua in normal pregnancy and preeclampsia. Eur J Obstet Gynecol Reprod Biol. 2003;109:8–15.Google Scholar
  109. 109.
    Dhillion P, Wallace K, Herse F, Scott J, Wallukat G, Heath J, et al. IL-17-mediated oxidative stress is an important stimulator of AT1-AA and hypertension during pregnancy. Am J Physiol-Regul Integr Comp Physiol. 2012;303:R353–R8.Google Scholar
  110. 110.
    Toldi G, Rigó J, Stenczer B, Vásárhelyi B, Molvarec A. Increased prevalence of IL-17-producing peripheral blood lymphocytes in pre-eclampsia. Am J Reprod Immunol. 2011;66:223–9.Google Scholar
  111. 111.
    Cornelius DC, Hogg JP, Scott J, Wallace K, Herse F, Moseley J, et al. Administration of interleukin-17 soluble receptor C suppresses TH17 cells, oxidative stress, and hypertension in response to placental ischemia during Pregnancy novelty and significance. Hypertension. 2013;62:1068–73.Google Scholar
  112. 112.
    Wallace K, Richards S, Dhillon P, Weimer A, Edholm E-s, Bengten E, et al. CD4 + T-helper cells stimulated in response to placental ischemia mediate hypertension during pregnancy. Hypertension. 2011;57:949–55.Google Scholar
  113. 113.
    Fiore S, Newell M-L, Trabattoni D, Thorne C, Gray L, Savasi V, et al. Antiretroviral therapy-associated modulation of Th1 and Th2 immune responses in HIV-infected pregnant women. J Reprod Immunol. 2006;70:143–50.Google Scholar
  114. 114.
    Alonso R, Resino S, Bellón J, Muñoz-Fernández M. Antiretroviral treatment induces a shift to type-2 cytokine responses in HIV-1 infected pregnant women. Eur Cytokine Netw. 2000;11:647–53.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Discipline of Obstetrics and Gynaecology, Nelson R Mandela School of MedicineUniversity of KwaZulu-NatalDurbanSouth Africa
  2. 2.Optics and Imaging CentreUniversity of KwaZulu-NatalDurbanSouth Africa
  3. 3.KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical SciencesUniversity of KwaZulu-NatalDurbanSouth Africa
  4. 4.Centre for the AIDS Programme of Research in South Africa (CAPRISA)DurbanSouth Africa
  5. 5.Women’s Health and HIV Research GroupUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations