Advertisement

Inflammation Research

, Volume 68, Issue 1, pp 19–23 | Cite as

Cross talk between natural killer cells and mast cells in tumor angiogenesis

  • Domenico RibattiEmail author
  • Roberto Tamma
  • Enrico Crivellato
Review

Abstract

Natural killer (NK) cells are large granular lymphocytes of the innate immune system, responsible for direct targeting and killing of both virally infected and transformed cells. Under pathological conditions and during inflammation, NK cells extravasate into the lymph nodes and accumulate at inflammatory or tumor sites. The activation of NK cells depends on an intricate balance between activating and inhibitory signals that determines if a target will be susceptible to NK-mediated lysis. Many experimental evidences indicate that NK cells are also involved in several immunoregulatory processes and have the ability to modulate the adaptive immune responses. Many other important aspects about NK cell biology are emerging in these last years. The aim of this review is to elucidate the role of NK cells in tumor angiogenesis and their interaction with mast cells. In fact, it has been observed that NK cells produce pro-angiogenic factors and participate alone or in cooperation with mast cells to the regulation of angiogenesis in both physiological and pathological conditions including tumors.

Keywords

Angiogenesis Anti-angiogenesis Mast cells NK cells Tumor growth 

References

  1. 1.
    Miller JS, Verfaillie C, McGlave P. The generation of human natural killer cells from CD34+/DR− primitive progenitors in long-term bone marrow culture. Blood. 1992;80(9):2182–7.Google Scholar
  2. 2.
    Bennett IM, Zatsepina O, Zamai L, Azzoni L, Mikheeva T, Perussia B. Definition of a natural killer NKR-P1A+/CD56-/CD16- functionally immature human NK cell subset that differentiates in vitro in the presence of interleukin 12. J Exp Med. 1996;184(5):1845–56.CrossRefGoogle Scholar
  3. 3.
    Moretta A, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC, Biassoni R, Moretta L. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol. 2001;19:197–223.CrossRefGoogle Scholar
  4. 4.
    Trinchieri G. Biology of natural killer cells, advances in immunology. Amsterdam: Elsevier; 1989. pp. 187–376.Google Scholar
  5. 5.
    Freud AG, Caligiuri MA. Human natural killer cell development. Immunol Rev. 2006;214:56–72.CrossRefGoogle Scholar
  6. 6.
    Timonen T, Saksela E. Isolation of human NK cells by density gradient centrifugation. J Immunol Methods. 1980;36(3–4):285–91.CrossRefGoogle Scholar
  7. 7.
    Young JD-E, Cohn ZA. Cellular and humoral mechanisms of cytotoxicity: structural and functional analogies. Adv Immunol. 1987;41:269–332.CrossRefGoogle Scholar
  8. 8.
    Carrega P, Ferlazzo G. Natural killer cell distribution and trafficking in human tissues, Front Immunol 3 (2012).Google Scholar
  9. 9.
    Cooper MA. Human natural killer cells: a unique innate immunoregulatory role for the CD56bright subset. Blood. 2001;97(10):3146–51.CrossRefGoogle Scholar
  10. 10.
    Moretta L, Moretta A. Unravelling natural killer cell function: triggering and inhibitory human NK receptors. EMBO J. 2003;23(2):255–9.CrossRefGoogle Scholar
  11. 11.
    Hayakawa Y, Smyth MJ. Innate immune recognition and suppression of tumors, advances in cancer research, Amsterdam: Elsevier; 2006. pp. 293–322.Google Scholar
  12. 12.
    Smyth MJ, Hayakawa Y, Takeda K, Yagita H. New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer. 2002;2(11):850–61.CrossRefGoogle Scholar
  13. 13.
    Sullivan JL, Woda BA. X-linked lymphoproliferative syndrome. Immunodefic Rev. 1989;1(4):325–47.Google Scholar
  14. 14.
    Hanna J, Goldman-Wohl D, Hamani Y, Avraham I, Greenfield C, Natanson-Yaron S, Prus D, Cohen-Daniel L, Arnon TI, Manaster I, Gazit R, Yutkin V, Benharroch D, Porgador A, Keshet E, Yagel S, Mandelboim O. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med. 2006;12(9):1065–74.CrossRefGoogle Scholar
  15. 15.
    Hanna J, Mandelboim O. When killers become helpers. Trends Immunol. 2007;28(5):201–6.CrossRefGoogle Scholar
  16. 16.
    Ratsep MT, Felker AM, Kay VR, Tolusso L, Hofmann AP, Croy BA. Uterine natural killer cells: supervisors of vasculature construction in early decidua basalis. Reproduction. 2014;149(2):R91–102.CrossRefGoogle Scholar
  17. 17.
    Krzywinska E, Kantari-Mimoun C, Kerdiles Y, Sobecki M, Isagawa T, Gotthardt D, Castells M, Haubold J, Millien C, Viel T, Tavitian B, Takeda N, Fandrey J, Vivier E, Sexl V, Stockmann C. Loss of HIF-1α in natural killer cells inhibits tumour growth by stimulating non-productive angiogenesis, Nat Commun 8(1) (2017).Google Scholar
  18. 18.
    Lee H, Schlereth SL, Park EY, Emami-Naeini P, Chauhan SK, Dana R. A novel pro-angiogenic function for interferon-γ–secreting natural killer cells. Investig Opthalmol Vis Sci. 2014;55(5):2885.CrossRefGoogle Scholar
  19. 19.
    Hoeres T, Wilhelm M, Smetak M, Holzmann E, Schulze-Tanzil G, Birkmann J. Immune cells regulate VEGF signalling via release of VEGF and antagonistic soluble VEGF receptor-1. Clin Exp Immunol. 2018;192(1):54–67.CrossRefGoogle Scholar
  20. 20.
    Lee JY, Lee M, Lee SK. Role of endometrial immune cells in implantation. Clin Exp Reprod Med. 2011;38(3):119.CrossRefGoogle Scholar
  21. 21.
    Carmeliet P, Tessier-Lavigne M. Common mechanisms of nerve and blood vessel wiring. Nature. 2005;436(7048):193–200.CrossRefGoogle Scholar
  22. 22.
    Zhang J, Adams MA, Croy BA. Alterations in maternal and fetal heart functions accompany failed spiral arterial remodeling in pregnant mice. Am J Obstet Gynecol. 2011;205(5):485 e1–16.CrossRefGoogle Scholar
  23. 23.
    Blois SM, Klapp BF, Barrientos G. Decidualization and angiogenesis in early pregnancy: unravelling the functions of DC and NK cells. J Reprod Immunol. 2011;88(2):86–92.CrossRefGoogle Scholar
  24. 24.
    Leonard S, Murrant C, Tayade C, Vandenheuvel M, Watering R, Croy B. Mechanisms regulating immune cell contributions to spiral artery modification—facts and hypotheses—a review. Placenta. 2006;27:40–6.CrossRefGoogle Scholar
  25. 25.
    Bruno A, Ferlazzo G, Albini A, Noonan DM. A think tank of TINK/TANKs: Tumor-infiltrating/tumor-associated natural killer cells in tumor progression and angiogenesis. J Natl Cancer Inst. 2014;106(8):1–13.CrossRefGoogle Scholar
  26. 26.
    Bruno A, Focaccetti C, Pagani A, Imperatori AS, Spagnoletti M, Rotolo N, Cantelmo AR, Franzi F, Capella C, Ferlazzo G, Mortara L, Albini A, Noonan DM. The proangiogenic phenotype of natural killer cells in patients with non-small cell lung cancer. Neoplasia. 2013;15(2):133-IN7.CrossRefGoogle Scholar
  27. 27.
    Bruno A, Bassani B, D’Urso DG, Pitaku I, Cassinotti E, Pelosi G, Boni L, Dominioni L, Noonan DM, Mortara L, Albini A. Angiogenin and the MMP9–TIMP2 axis are up-regulated in proangiogenic, decidual NK-like cells from patients with colorectal cancer. FASEB J. 2018:fj.201701103R.  https://doi.org/10.1096/fj.201701103R.Google Scholar
  28. 28.
    Yao L, Sgadari C, Furuke K, Bloom ET, Teruya-Feldstein J, Tosato G. Contribution of natural killer cells to inhibition of angiogenesis by interleukin-12. Blood. 1999;93(5):1612–21.Google Scholar
  29. 29.
    Trinchieri G, Rengaraju M, D’Andrea A, Valiante NM, Kubin M, Aste M, Chehimi J. Producer cells of interleukin 12. Parasitol Today. 1993;9(3):97.CrossRefGoogle Scholar
  30. 30.
    Cavallo F, Quaglino E, Cifaldi L, Di Carlo E, Andre A, Bernabei P, Musiani P, Forni G, Calogero RA. Interleukin 12-activated lymphocytes influence tumor genetic programs. Cancer Res. 2001;61(8):3518–23.Google Scholar
  31. 31.
    Gotthardt D, Putz EM, Grundschober E, Prchal-Murphy M, Straka E, Kudweis P, Heller G, Bago-Horvath Z, Witalisz-Siepracka A, Cumaraswamy AA, Gunning PT, Strobl B, Mu ller M, Moriggl R, Stockmann C, Sexl V. STAT5 is a key regulator in NK cells and acts as a molecular switch from tumor surveillance to tumor promotion. Cancer Discov. 2016;6(4):414–29.CrossRefGoogle Scholar
  32. 32.
    Ribatti D. Mast cells and macrophages exert beneficial and detrimental effects on tumor progression and angiogenesis. Immunol Lett. 2013;152(2):83–8.CrossRefGoogle Scholar
  33. 33.
    Gruber BL, Marchese MJ, Kiely J, Schwartz LB, Schecter NM. 520 Human mast cell products degrade connective tissue matrix. J Allergy Clin Immunol. 1988;81(1):298.CrossRefGoogle Scholar
  34. 34.
    Detoraki A, Staiano RI, Granata F, Giannattasio G, Prevete N, de Paulis A, Ribatti D, Genovese A, Triggiani M, Marone G. Vascular endothelial growth factors synthesized by human lung mast cells exert angiogenic effects. J Allergy Clin Immunol. 2009;123(5):1142–9.e5.CrossRefGoogle Scholar
  35. 35.
    Ribatti D, Crivellato E, Candussio L, Nico B, Vacca A, Roncali L, Dammacco F. Mast cells and their secretory granules are angiogenic in the chick embryo chorioallantoic membrane. Clin Exp Allergy. 2001;31(4):602–8.CrossRefGoogle Scholar
  36. 36.
    Norrby K, Jakobsson A, Sörbo J. Mast-cell-mediated angiogenesis: a novel experimental model using the rat mesentery. Virchows Arch B Cell Pathol Incl Mol Pathol. 1986;52(1):195–206.CrossRefGoogle Scholar
  37. 37.
    Norrby K, Jakobsson A, Sörbo J. Mast-cell secretion and angiogenesis, a quantitative study in rats and mice. Virchows Arch B Cell Pathol Incl Mol Pathol. 1989;57(1):251–6.CrossRefGoogle Scholar
  38. 38.
    Ribatti D, Crivellato E. Mast cells, angiogenesis, and tumour growth. Biochim Biophys Acta. 2012;1822(1):2–8.CrossRefGoogle Scholar
  39. 39.
    Williams NS, Moore TA, Schatzle JD, Puzanov IJ, Sivakumar PV, Zlotnik A, Bennett M, Kumar V. Generation of lytic natural killer 1.1+, Ly-49-cells from multipotential murine bone marrow progenitors in a stroma-free culture: definition of cytokine requirements and developmental intermediates. J Exp Med. 1997;186(9):1609–14.CrossRefGoogle Scholar
  40. 40.
    Kusaka Y, Sato K, Zhang Q, Morita A, Kasahara T, Yanagihara Y. Association of natural killer cell activity with serum IgE. Int Arch Allergy Immunol. 1997;112(4):331–5.CrossRefGoogle Scholar
  41. 41.
    Arase N, Arase H, Hirano S, Yokosuka T, Sakurai D, Saito T. IgE-mediated activation of NK cells through Fc RIII. J Immunol. 2003;170(6):3054–8.CrossRefGoogle Scholar
  42. 42.
    Meyer N, Woidacki K, Knöfler M, Meinhardt G, Nowak D, Velicky P, Pollheimer J, Zenclussen AC. Chymase-producing cells of the innate immune system are required for decidual vascular remodeling and fetal growth. Sci Rep. 2017;22(7):45106.CrossRefGoogle Scholar
  43. 43.
    St. John AL, Rathore APS, Yap H, Ng ML, Metcalfe DD, Vasudevan SG, Abraham SN. Immune surveillance by mast cells during dengue infection promotes natural killer (NK) and NKT-cell recruitment and viral clearance. 2011;Proc Natl Acad Sci 108(22):9190–9195.CrossRefGoogle Scholar
  44. 44.
    Burke SM, Issekutz TB, Mohan K, Lee PWK, Shmulevitz M, Marshall JS. Human mast cell activation with virus-associated stimuli leads to the selective chemotaxis of natural killer cells by a CXCL8-dependent mechanism. Blood. 2008;111(12):5467–76.CrossRefGoogle Scholar
  45. 45.
    Portales-Cervantes L, Haidl ID, Lee PW, Marshall JS. Virus-infected human mast cells enhance natural killer cell functions. J Innate Immunity. 2016;9(1):94–108.CrossRefGoogle Scholar
  46. 46.
    Vosskuhl K, Greten TF, Manns MP, Korangy F, Wedemeyer J. Lipopolysaccharide-mediated mast cell activation induces IFN- secretion by NK cells. J Immunol. 2010;185(1):119–25.CrossRefGoogle Scholar
  47. 47.
    Huang B, Lei Z, Zhang GM, Li D, Song C, Li B, Liu Y, Yuan Y, Unkeless J, Xiong H, Feng ZH. SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood. 2008;112(4):1269–79.CrossRefGoogle Scholar
  48. 48.
    Oldford SA, Haidl ID, Howatt MA, Leiva CA, Johnston B, Marshall JS. A critical role for mast cells and mast cell-derived IL-6 in TLR2-mediated inhibition of tumor growth. J Immunol. 2010;185(11):7067–76.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Basic Medical Sciences, Neurosciences and Sensory OrgansUniversity of Bari Medical SchoolBariItaly
  2. 2.Department of Medicine, Section of Human AnatomyUniversity of UdineUdineItaly

Personalised recommendations