Skip to main content
Log in

sRAGE attenuates angiotensin II-induced cardiomyocyte hypertrophy by inhibiting RAGE-NFκB-NLRP3 activation

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

The receptor for advanced glycation endproducts (RAGE) is an innate immunity receptor that has been implicated in the pathogenesis of atherosclerotic cardiovascular disease. However, the possibility that RAGE-mediated signaling is involved in angiotensin II (Ang II)-induced cardiac left ventricular hypertrophy has yet to be investigated. We therefore determined whether RAGE has a role in regulating pathological cardiac hypertrophy.

Materials and subjects

Protein abundance was estimated using Western blotting and intracellular ROS level and phospho-p65 were detected using fluorescence microscopy. Enzyme-linked immunosorbent assay was used to detect HMGB1 and IL-1β. All in vitro experiments were performed using H9C2 cells.

Treatments

To induce cardiomyocyte hypertrophy, 300 nM Ang II was treated for 48 h and 2 µg/ml sRAGE was treated 1 h prior to addition of Ang II.

Results

sRAGE attenuated Ang II-induced cardiomyocyte hypertrophy by downregulating RAGE and angiotensin II type 1 receptor expression. Secretion levels of high motility group box 1 and interleukin-1β, estimated from a cell culture medium, were significantly reduced by sRAGE. Activated PKCs and ERK1/2, important signals in left ventricular hypertrophy (LVH) development, were downregulated by sRAGE treatment. Furthermore, we found that nuclear factor-κB and NOD-like receptor protein 3 (NLRP3) were associated with RAGE-mediated cardiomyocyte hypertrophy.

Conclusions

In the context of these results, we conclude that RAGE induces cardiac hypertrophy through the activation of the PKCs-ERK1/2 and NF-κB-NLRP3-IL1β signaling pathway, and suggest that RAGE-NLRP3 may be an important mediator of Ang II-induced cardiomyocyte hypertrophy. In addition, we determined that inhibition of RAGE activation with soluble RAGE (sRAGE) has a protective effect on Ang II-induced cardiomyocyte hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AT1R:

Angiotensin II receptor type I

RAGE:

Receptor for advanced glycation endproducts

Ang II:

Angiotensin II

NLRP3:

Nucleotide-binding oligomerization domain-like receptor protein 3

sRAGE:

Soluble RAGE

LVH:

Left ventricular hypertrophy

ROS:

Reactive oxygen species

HMGB1:

High-mobility group box 1

References

  1. Paradis P, Dali-Youcef N, Paradis FW, Thibault G, Nemer M. Overexpression of angiotensin II type I receptor in cardiomyocytes induces cardiac hypertrophy and remodeling. Proc Natl Acad Sci USA. 2000;97(2):931–6. https://doi.org/10.1073/pnas.97.2.931.

    Article  PubMed  CAS  Google Scholar 

  2. Matsui T, Yamagishi S, Ueda S, Nakamura K, Imaizumi T, Takeuchi M, et al. Telmisartan, an angiotensin II type 1 receptor blocker, inhibits advanced glycation end-product (AGE)-induced monocyte chemoattractant protein-1 expression in mesangial cells through downregulation of receptor for AGEs via peroxisome proliferator-activated receptor-gamma activation. J Int Med Res. 2007;35(4):482–9. https://doi.org/10.1177/147323000703500407.

    Article  PubMed  CAS  Google Scholar 

  3. Lin L, Park S, Lakatta EG. RAGE signaling in inflammation and arterial aging. Front Biosci. 2009;14:1403–13.

    Article  PubMed Central  CAS  Google Scholar 

  4. Park S, Yoon SJ, Tae HJ, Shim CY. RAGE and cardiovascular disease. Front Biosci. 2011;16:486–97.

    Article  CAS  Google Scholar 

  5. Kang R, Tang DL, Lotze MT, Zeh HJ. RAGE regulates autophagy and apoptosis following oxidative injury. Autophagy. 2011;7(4):442–4. https://doi.org/10.4161/auto.7.4.14681.

    Article  PubMed  Google Scholar 

  6. Hariharan N, Ikeda Y, Hong C, Alcendor RR, Usui S, Gao SM, et al. Autophagy plays an essential role in mediating regression of hypertrophy during unloading of the heart. Plos One. 2013. https://doi.org/10.1371/journal.pone.0051632.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yan L, Mathew L, Chellan B, Gardner B, Earley J, Puri TS, et al. S100/Calgranulin-mediated inflammation accelerates left ventricular hypertrophy and aortic valve sclerosis in chronic kidney disease in a receptor for advanced glycation end products-dependent manner. Arterioscler Thromb Vasc Biol. 2014;34(7):1399–411. https://doi.org/10.1161/ATVBAHA.114.303508.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Franchi L, Eigenbrod T, Munoz-Planillo R, Nunez G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol. 2009;10(3):241–7. https://doi.org/10.1038/ni.1703.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J. NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity. 2004;20(3):319–25.

    Article  PubMed  CAS  Google Scholar 

  10. Kahlenberg JM, Lundberg KC, Kertesy SB, Qu Y, Dubyak GR. Potentiation of caspase-1 activation by the P2 × 7 receptor is dependent on TLR signals and requires NF-kappaB-driven protein synthesis. J Immunol. 2005;175(11):7611–22.

    Article  PubMed  CAS  Google Scholar 

  11. Gu Y, Kuida K, Tsutsui H, Ku G, Hsiao K, Fleming MA, et al. Activation of interferon-gamma inducing factor mediated by interleukin-1beta converting enzyme. Science. 1997;275(5297):206–9.

    Article  PubMed  CAS  Google Scholar 

  12. Orn S, Ueland T, Manhenke C, Sandanger O, Godang K, Yndestad A, et al. Increased interleukin-1beta levels are associated with left ventricular hypertrophy and remodelling following acute ST segment elevation myocardial infarction treated by primary percutaneous coronary intervention. J Intern Med. 2012;272(3):267–76. https://doi.org/10.1111/j.1365-2796.2012.02517.x.

    Article  PubMed  CAS  Google Scholar 

  13. Harada E, Nakagawa O, Yoshimura M, Harada M, Nakagawa M, Mizuno Y, et al. Effect of interleukin-1 beta on cardiac hypertrophy and production of natriuretic peptides in rat cardiocyte culture. J Mol Cell Cardiol. 1999;31(11):1997–2006. https://doi.org/10.1006/jmcc.1999.1030.

    Article  PubMed  CAS  Google Scholar 

  14. Bracey NA, Beck PL, Muruve DA, Hirota SA, Guo J, Jabagi H, et al. The Nlrp3 inflammasome promotes myocardial dysfunction in structural cardiomyopathy through interleukin-1beta. Exp Physiol. 2013;98(2):462–72. https://doi.org/10.1113/expphysiol.2012.068338.

    Article  PubMed  CAS  Google Scholar 

  15. Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464(7293):1357-U7. https://doi.org/10.1038/Nature08938.

    Article  Google Scholar 

  16. Mezzaroma E, Toldo S, Farkas D, Seropian IM, Van Tassell BW, Salloum FN, et al. The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc Natl Acad Sci USA. 2011;108(49):19725–30. https://doi.org/10.1073/pnas.1108586108.

    Article  PubMed  Google Scholar 

  17. Shirasuna K, Karasawa T, Usui F, Kobayashi M, Komada T, Kimura H, et al. NLRP3 deficiency improves angiotensin II-induced hypertension but not fetal growth restriction during pregnancy. Endocrinology. 2015;156(11):4281–92. https://doi.org/10.1210/en.2015-1408.

    Article  PubMed  CAS  Google Scholar 

  18. Wang J, Wen Y, Lv LL, Liu H, Tang RN, Ma KL, et al. Involvement of endoplasmic reticulum stress in angiotensin II-induced NLRP3 inflammasome activation in human renal proximal tubular cells in vitro. Acta Pharmacol Sin. 2015;36(7):821–30. https://doi.org/10.1038/aps.2015.21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Watson AM, Li J, Samijono D, Bierhaus A, Thomas MC, Jandeleit-Dahm KA, et al. Quinapril treatment abolishes diabetes-associated atherosclerosis in RAGE/apolipoprotein E double knockout mice. Atherosclerosis. 2014;235(2):444–8. https://doi.org/10.1016/j.atherosclerosis.2014.05.945.

    Article  PubMed  CAS  Google Scholar 

  20. Tae HJ, Kim JM, Park S, Tomiya N, Li G, Wei W, et al. The N-glycoform of sRAGE is the key determinant for its therapeutic efficacy to attenuate injury-elicited arterial inflammation and neointimal growth. J Mol Med. 2013;91(12):1369–81. https://doi.org/10.1007/s00109-013-1091-4.

    Article  PubMed  CAS  Google Scholar 

  21. Yang WI, Lee D, Lee DL, Hong SY, Lee SH, Kang SM, et al. Blocking the receptor for advanced glycation end product activation attenuates autoimmune myocarditis. Circ J. 2014;78(5):1197-U216. https://doi.org/10.1253/circj.CJ-13-1235.

    Article  CAS  Google Scholar 

  22. Liu Q, Chen HB, Luo M, Zheng H. Serum soluble RAGE level inversely correlates with left ventricular hypertrophy in essential hypertension patients. Genet Mol Res. 2016. https://doi.org/10.4238/gmr.15028414.

    Article  PubMed  Google Scholar 

  23. Chen J, Zhang J, Xu L, Xu C, Chen S, Yang J, et al. Inhibition of neointimal hyperplasia in the rat carotid artery injury model by a HMGB1 inhibitor. Atherosclerosis. 2012;224(2):332–9. https://doi.org/10.1016/j.atherosclerosis.2012.07.020.

    Article  PubMed  CAS  Google Scholar 

  24. Polizio AH, Balestrasse KB, Yannarelli GG, Noriegai GO, Gorzalczany S, Taira C, et al. Angiotensin II regulates cardiac hypertrophy via oxidative stress but not antioxidant enzyme activities in experimental renovascular hypertension. Hypertens Res. 2008;31(2):325–34. https://doi.org/10.1291/hypres.31.325.

    Article  PubMed  CAS  Google Scholar 

  25. Coughlan MT, Thorburn DR, Penfold SA, Laskowski A, Harcourt BE, Sourris KC, et al. RAGE-induced cytosolic ROS promote mitochondrial superoxide generation in diabetes. J Am Soc Nephrol. 2009;20(4):742–52. https://doi.org/10.1681/Asn.2008050514.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Gawdzik J, Mathew L, Kim G, Puri TS, Bowman MAH. Vascular remodeling and arterial calcification are directly mediated by S100A12 (EN-RAGE) in chronic kidney disease. Am J Nephrol. 2011;33(3):250–9. https://doi.org/10.1159/000324693.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Seshiah PN, Weber DS, Rocic P, Valppu L, Taniyama Y, Griendling KK. Angiotensin II stimulation of NAD(P)H oxidase activity—upstream mediators. Circ Res. 2002;91(5):406–13. https://doi.org/10.1161/01.Res.0000033523.08033.16.

    Article  PubMed  CAS  Google Scholar 

  28. Ihara Y, Egashira K, Nakano K, Ohtani K, Kubo M, Koga J, et al. Upregulation of the ligand-RAGE pathway via the angiotensin II type I receptor is essential in the pathogenesis of diabetic atherosclerosis. J Mol Cell Cardiol. 2007;43(4):455–64. https://doi.org/10.1016/j.yjmcc.2007.07.044.

    Article  PubMed  CAS  Google Scholar 

  29. Lee TW, Kao YH, Lee TI, Chang CJ, Lien GS, Chen YJ. Calcitriol modulates receptor for advanced glycation end products (RAGE) in diabetic hearts. Int J Cardiol. 2014;173(2):236–41. https://doi.org/10.1016/j.ijcard.2014.02.041.

    Article  PubMed  Google Scholar 

  30. Lin H, Shen L, Zhang X, Xie J, Hao H, Zhang Y, et al. HMGB1-RAGE axis makes no contribution to cardiac remodeling induced by pressure-overload. PLoS One. 2016;11(6):e0158514. https://doi.org/10.1371/journal.pone.0158514.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Nair AR, Ebenezer PJ, Saini Y, Francis J. Angiotensin II-induced hypertensive renal inflammation is mediated through HMGB1-TLR4 signaling in rat tubulo-epithelial cells. Exp Cell Res. 2015;335(2):238–47. https://doi.org/10.1016/j.yexcr.2015.05.011.

    Article  PubMed  CAS  Google Scholar 

  32. Luan ZG, Zhang H, Yang PT, Ma XC, Zhang C, Guo RX. HMGB1 activates nuclear factor-kappaB signaling by RAGE and increases the production of TNF-alpha in human umbilical vein endothelial cells. Immunobiology. 2010;215(12):956–62. https://doi.org/10.1016/j.imbio.2009.11.001.

    Article  PubMed  CAS  Google Scholar 

  33. Funayama A, Shishido T, Netsu S, Narumi T, Kadowaki S, Takahashi H, et al. Cardiac nuclear high mobility group box 1 prevents the development of cardiac hypertrophy and heart failure. Cardiovasc Res. 2013;99(4):657–64. https://doi.org/10.1093/cvr/cvt128.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Petersen CA, Burleigh BA. Role for interleukin-1 beta in Trypanosoma cruzi-induced cardiomyocyte hypertrophy. Infect Immun. 2003;71(8):4441–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Koulis C, Watson AM, Gray SP, Jandeleit-Dahm KA. Linking RAGE and Nox in diabetic micro- and macrovascular complications. Diabetes Metab. 2015;41(4):272–81. https://doi.org/10.1016/j.diabet.2015.01.006.

    Article  PubMed  CAS  Google Scholar 

  36. Min HJ, Kim JH, Yoo JE, Oh JH, Kim KS, Yoon JH, et al. ROS-dependent HMGB1 secretion upregulates IL-8 in upper airway epithelial cells under hypoxic condition. Mucosal Immunol. 2017;10(3):685–94. https://doi.org/10.1038/mi.2016.82.

    Article  PubMed  CAS  Google Scholar 

  37. Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418(6894):191–5. https://doi.org/10.1038/Nature00858.

    Article  PubMed  CAS  Google Scholar 

  38. Bianchi ME, Manfredi AA. High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol Rev. 2007;220:35–46. https://doi.org/10.1111/j.1600-065X.2007.00574.x.

    Article  PubMed  CAS  Google Scholar 

  39. Willingham SB, Allen IC, Bergstralh DT, Brickey WJ, Huang MT, Taxman DJ, et al. NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and -independent pathways. J Immunol. 2009;183(3):2008–15. https://doi.org/10.4049/jimmunol.0900138.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Chi W, Chen H, Li F, Zhu Y, Yin W, Zhuo Y. HMGB1 promotes the activation of NLRP3 and caspase-8 inflammasomes via NF-kappaB pathway in acute glaucoma. J Neuroinflamm. 2015;12:137. https://doi.org/10.1186/s12974-015-0360-2.

    Article  CAS  Google Scholar 

  41. De Batista PR, Palacios R, Martin A, Hernanz R, Medici CT, Silva MA, et al. Toll-like receptor 4 upregulation by angiotensin II contributes to hypertension and vascular dysfunction through reactive oxygen species production. PLoS One. 2014;9(8):e104020. https://doi.org/10.1371/journal.pone.0104020.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang L, Li YL, Zhang CC, Cui W, Wang X, Xia Y, et al. Inhibition of Toll-like receptor 2 reduces cardiac fibrosis by attenuating macrophage-mediated inflammation. Cardiovasc Res. 2014;101(3):383–92. https://doi.org/10.1093/cvr/cvt258.

    Article  PubMed  CAS  Google Scholar 

  43. Gasiorowski K, Brokos B, Echeverria V, Barreto GE, Leszek J. RAGE-TLR crosstalk sustains chronic inflammation in neurodegeneration. Mol Neurobiol. 2017. https://doi.org/10.1007/s12035-017-0419-4.

    Article  PubMed  Google Scholar 

  44. Trentin-Sonoda M, da Silva RC, Kmit FV, Abrahao MV, Monnerat Cahli G, Brasil GV, et al. Knockout of toll-like receptors 2 and 4 prevents renal ischemia-reperfusion-induced cardiac hypertrophy in mice. PLoS One. 2015;10(10):e0139350. https://doi.org/10.1371/journal.pone.0139350.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning (NRF-2015R1A2A2A01007346) and (NRF-2015R1C1A1A01054945), and by the Korea Health 21 R&D Project, Ministry of Health & Welfare, Republic of Korea (HI08C2149).

Author information

Authors and Affiliations

Authors

Contributions

MEL mainly participated in all experiments and editing manuscript and SL and SP mainly conceive the study and wrote the manuscript; JJ, JL, and SC performed the experiment and analyses; MS participated in the study design. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Sungha Park.

Ethics declarations

Availability of data and material

All data supporting the conclusions of this article are included within the article.

Conflict of interests

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Andrew Roberts.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 368 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, S., Lee, M.E., Jeong, J. et al. sRAGE attenuates angiotensin II-induced cardiomyocyte hypertrophy by inhibiting RAGE-NFκB-NLRP3 activation. Inflamm. Res. 67, 691–701 (2018). https://doi.org/10.1007/s00011-018-1160-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-018-1160-9

Keywords

Navigation