IL-33 attenuates mortality by promoting IFN-γ production in sepsis

Original Research Paper

Abstract

Objective and design

Sepsis remains a major clinical problem with high morbidity and mortality. Interleukin (IL)-33 is a recently described member of the IL-1 family that is widely expressed and functions as a new inflammatory mediator. IL-33 has been reported to protect sepsis, but the underlying mechanisms are not well-elucidated.

Materials and methods

We measured the interferon gamma (IFN-γ) production in septic mice after IL-33 treatment.

Results

IL-33 treatment enhanced the IFN-γ level in blood and promoted mice’s survival, so the protective effects of IL-33 depend on IFN-γ. The IL-33 treatment also promoted both γδ T cells and NK cells in septic mice.

Conclusion

Our data showed that IL-33 attenuates mortality by promoting IFN-γ production in sepsis.

Keywords

IL-33 IFN-γ γδ T cells NK cells Sepsis 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

Not applicable.

References

  1. 1.
    Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med. 2003;348(2):138–50.CrossRefPubMedGoogle Scholar
  2. 2.
    Riedemann NC, Guo RF, Ward PA. Novel strategies for the treatment of sepsis. Nat Med. 2003;9(5):517–24.CrossRefPubMedGoogle Scholar
  3. 3.
    Vincent JL, Opal SM, Marshall JC, Tracey KJ. Sepsis definitions: time for change. Lancet. 2013;381(9868):774–5.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Deutschman CS, Tracey KJ. Sepsis: current dogma and new perspectives. Immunity. 2014;40(4):463–75.CrossRefPubMedGoogle Scholar
  5. 5.
    Rittirsch D, Flierl MA, Ward PA. Harmful molecular mechanisms in sepsis. Nat Rev Immunol. 2008;8(10):776–87.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    LaRosa SP, Opal SM. Sepsis strategies in development. Clin Chest Med. 2008;29(4):735–47, x–xi.Google Scholar
  7. 7.
    Alves-Filho JC, Sonego F, Souto FO, Freitas A, Verri WA Jr, Auxiliadora-Martins M, et al. Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection. Nat Med. 2010;16(6):708–12.CrossRefPubMedGoogle Scholar
  8. 8.
    Li S, Zhu FX, Zhao XJ, An YZ. The immunoprotective activity of interleukin-33 in mouse model of cecal ligation and puncture-induced sepsis. Immunol Lett. 2016;169:1–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Chaudry IH, Wichterman KA, Baue AE. Effect of sepsis on tissue adenine nucleotide levels. Surgery. 1979;85(2):205–11.PubMedGoogle Scholar
  10. 10.
    Crispe IN. Isolation of mouse intrahepatic lymphocytes. Curr Protoc Immunol. 2001;Chap. 3(Unit 3):21.Google Scholar
  11. 11.
    Lakshmikanth CL, Jacob SP, Chaithra VH, de Castro-Faria-Neto HC, Marathe GK. Sepsis: in search of cure. Inflamm Res. 2016;65(8):587–602.CrossRefPubMedGoogle Scholar
  12. 12.
    Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315(8):801–10.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Cohen J. The immunopathogenesis of sepsis. Nature. 2002;420(6917):885–91.CrossRefPubMedGoogle Scholar
  14. 14.
    Wiersinga WJ, Leopold SJ, Cranendonk DR, van der Poll T. Host innate immune responses to sepsis. Virulence. 2014;5(1):36–44.CrossRefPubMedGoogle Scholar
  15. 15.
    Oberholzer A, Oberholzer C, Moldawer LL. Sepsis syndromes: understanding the role of innate and acquired immunity. Shock. 2001;16(2):83–96.CrossRefPubMedGoogle Scholar
  16. 16.
    Opal SM. New perspectives on immunomodulatory therapy for bacteraemia and sepsis. Int J Antimicrob Agents. 2010;36(Suppl 2):S70–3.CrossRefPubMedGoogle Scholar
  17. 17.
    Delano MJ, Ward PA. The immune system’s role in sepsis progression, resolution, and long-term outcome. Immunol Rev. 2016;274(1):330–53.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wang Y, Kong BB, Yang WP, Zhao X, Zhang R. Immunomodulatory intervention with gamma interferon in mice with sepsis. Life Sci. 2017;18585–94.Google Scholar
  19. 19.
    Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005;23(5):479–90.CrossRefPubMedGoogle Scholar
  20. 20.
    Haraldsen G, Balogh J, Pollheimer J, Sponheim J, Kuchler AM. Interleukin-33—cytokine of dual function or novel alarmin? Trends Immunol. 2009;30(5):227–33.CrossRefPubMedGoogle Scholar
  21. 21.
    Iikura M, Suto H, Kajiwara N, Oboki K, Ohno T, Okayama Y, et al. IL-33 can promote survival, adhesion and cytokine production in human mast cells. Lab Invest. 2007;87(10):971–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Matsushima A, Ogura H, Fujita K, Koh T, Tanaka H, Sumi Y, et al. Early activation of gammadelta T lymphocytes in patients with severe systemic inflammatory response syndrome. Shock. 2004;22(1):11–5.CrossRefPubMedGoogle Scholar
  23. 23.
    Lv R, Zhao J, Lei M, Xiao D, Yu Y, Xie J. IL-33 attenuates sepsis by inhibiting IL-17 receptor signaling through upregulation of SOCS3. Cell Physiol Biochem. 2017;42(5):1961–72.CrossRefPubMedGoogle Scholar
  24. 24.
    Bosmann M, Ward PA. Therapeutic potential of targeting IL-17 and IL-23 in sepsis. Clin Transl Med. 2012;1(1):4.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Arase H, Arase N, Saito T. Interferon gamma production by natural killer (NK) cells and NK1.1 + T cells upon NKR-P1 cross-linking. J Exp Med. 1996;183(5):2391–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Chiche L, Forel JM, Thomas G, Farnarier C, Vely F, Blery M, et al. The role of natural killer cells in sepsis. J Biomed Biotechnol. 2011;2011:986491.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Xu H, Turnquist HR, Hoffman R, Billiar TR. Role of the IL-33-ST2 axis in sepsis. Mil Med Res. 2017;4:3.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Anesthesiology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityZhejiangChina

Personalised recommendations