Inflammation Research

, Volume 67, Issue 5, pp 391–405 | Cite as

Vascular endothelium dysfunction: a conservative target in metabolic disorders

  • Shalini Jamwal
  • Saurabh Sharma



Vascular endothelium plays a role in capillary transport of nutrients and drugs and regulates angiogenesis, homeostasis, as well as vascular tone and permeability as a major regulator of local vascular homeostasis. The present study has been designed to investigate the role of endothelium in metabolic disorders.


The endothelium maintains the balance between vasodilatation and vasoconstriction, procoagulant and anticoagulant, prothrombotic and antithrombotic mechanisms.


Diabetes mellitus causes the activation of aldose reductase, polyol pathway and advanced glycation-end-product formation that collectively affect the phosphorylation status and expression of endothelial nitric oxide synthatase (eNOS) and causes vascular endothelium dysfunction. Elevated homocysteine levels have been associated with increase in LDL oxidation, generation of hydrogen peroxides, superoxide anions that increased oxidative degradation of nitric oxide. Hyperhomocysteinemia has been reported to increase the endogenous competitive inhibitors of eNOS viz L-N-monomethyl arginine (L-NMMA) and asymmetric dimethyl arginine (ADMA) that may contribute to vascular endothelial dysfunction. Hypercholesterolemia stimulates oxidation of LDL cholesterol, release of endothelins, and generation of ROS. The increased cholesterol and triglyceride level and decreased protective HDL level, decreases the activity and expression of eNOS and disrupts the integrity of vascular endothelium, due to oxidative stress. Hypertension also stimulates release of endothelins, vasoconstrictor prostanoids, angiotensin II, inflammatory cytokines, xanthine oxidase and, thereby, reduces bioavailability of nitric oxide.


Thus, the cellular and molecular mechanisms underlying diabetes mellitus, hyperhomocysteinemia, hypercholesterolemia hypertension and hyperuricemia leads to an imbalance of phosphorylation and dephosphorylation status of lipid and protein kinase that cause modulation of vascular endothelial L-arginine/nitric oxide synthetase (eNOS), to produce vascular endothelium dysfunction.


Vascular endothelial dysfunction Nitric oxide Endothelial Cardiovascular disease Oxidative stress Hypertension 


  1. 1.
    Endemann DH, Schiffrin EL. Endothelial dysfunction. J Am Soc Nephrol. 2004;15(8):1983–92.PubMedCrossRefGoogle Scholar
  2. 2.
    Janus A, et al., Insulin resistance and endothelial dysfunction constitute a common therapeutic target in cardiometabolic disorders. Mediators Inflamm, 2016Google Scholar
  3. 3.
    Hilfiker-Kleiner D, et al. A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell. 2007;128(3):p. 589–600.PubMedCrossRefGoogle Scholar
  4. 4.
    Khan S, Arakawa O, Onoue Y. Neurotoxin production by a chloromonad Fibrocapsa japonica (Raphidophyceae). Oceanogr Lit Rev. 1997;4(44):345.Google Scholar
  5. 5.
    Rubanyi GM. Endothelium-derived relaxing and contracting factors. J Cell Biochem. 1991;46(1):27–36.PubMedCrossRefGoogle Scholar
  6. 6.
    Fleming I, Busse R. Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integrative Compar Physiol. 2003;284(1):R1–R12.CrossRefGoogle Scholar
  7. 7.
    Tsutsumi Y, et al. Angiotensin II type 2 receptor overexpression activates the vascular kinin system and causes vasodilation. J Clin Investig. 1999;104(7):925–35.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Sandoo A, et al., The endothelium and its role in regulating vascular tone. Open Cardiovasc Med J. 2010;4(1).Google Scholar
  9. 9.
    Tomanek RJ, Busch TL. Coordinated capillary and myocardial growth in response to thyroxine treatment. Anatomical Record. 1998;251(1):44–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Tirziu D, et al. Myocardial hypertrophy in the absence of external stimuli is induced by angiogenesis in mice. J Clin Investig. 2007;117(11):3188–97.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Dallabrida SM, et al. Adipose tissue growth and regression are regulated by angiopoietin-1. Biochem Biophys Res Commun. 2003;311(3):563–71.PubMedCrossRefGoogle Scholar
  12. 12.
    Sunshine SB, et al., Endostatin lowers blood pressure via nitric oxide and prevents hypertension associated with VEGF inhibition. Proceedings of the National Academy of Sciences, 2012. 109(28): p. 11306–11311.Google Scholar
  13. 13.
    Martin JN, et al. Sexual transmission and the natural history of human herpesvirus 8 infection. N Engl J Med. 1998;338(14):948–54.PubMedCrossRefGoogle Scholar
  14. 14.
    Greene AK, Puder M. Partial hepatectomy in the mouse: technique and perioperative management. J Invest Surg. 2003;16(2):99–102.PubMedCrossRefGoogle Scholar
  15. 15.
    Lerman A, Burnett J Jr. Intact and altered endothelium in regulation of vasomotion. Circulation. 1992;86(6 Suppl):III12–I19.PubMedGoogle Scholar
  16. 16.
    Hadi HA, Carr CS, Suwaidi JA. Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vascular Health Risk Manag. 2005;1(3):183.Google Scholar
  17. 17.
    Pickup JC. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care. 2004;27(3):813–23.PubMedCrossRefGoogle Scholar
  18. 18.
    Miller C, et al. Tumor necrosis factor-α levels in adipose tissue of lean and obese cats. J Nutr. 1998;128(12):2751S–2752S.PubMedCrossRefGoogle Scholar
  19. 19.
    Fernandes G, et al. Immune response in the mutant diabetic C57BL/Ks-dt + mouse. Discrepancies between in vitro and in vivo immunological assays. J Clin Investig. 1978;61(2):243.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Chandra R. Cell-mediated immunity in genetically obese C57BL/6J ob/ob) mice. Am J Clin Nutr. 1980;33(1):13–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Khovidhunkit W, et al. Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. J Lipid Res. 2004;45(7):1169–96.PubMedCrossRefGoogle Scholar
  22. 22.
    Rosenson RS, et al. Dysfunctional HDL and atherosclerotic cardiovascular disease. Nat Rev Cardiol. 2016;13(1):48–60.PubMedCrossRefGoogle Scholar
  23. 23.
    Goffredo M, et al. Role of TM6SF2 rs58542926 in the pathogenesis of nonalcoholic pediatric fatty liver disease: a multiethnic study. Hepatology. 2016;63(1):117–25.PubMedCrossRefGoogle Scholar
  24. 24.
    Huang A, et al. Ascorbic acid enhances endothelial nitric-oxide synthase activity by increasing intracellular tetrahydrobiopterin. J Biol Chem. 2000;275(23):17399–406.PubMedCrossRefGoogle Scholar
  25. 25.
    Lyon CJ, Law RE, Hsueh WA. Minireview: adiposity, inflammation, and atherogenesis. Endocrinology. 2003;144(6):2195–200.PubMedCrossRefGoogle Scholar
  26. 26.
    Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction a marker of atherosclerotic risk. Arteriosclerosis, thrombosis, and vascular biology. 2003. 23(2):168–75.Google Scholar
  27. 27.
    Chatrchyan S, et al., The CMS experiment at the CERN LHC. 2008.Google Scholar
  28. 28.
    Ventura A, et al., Cre-lox-regulated conditional RNA interference from transgenes. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(28): p. 10380–10385.Google Scholar
  29. 29.
    Boldyrev A. Molecular mechanisms of homocysteine toxicity. Biochemistry. 2009;74(6):589–98.PubMedGoogle Scholar
  30. 30.
    Muravyov A, Tikhomirova I. Role Ca2+ in mechanisms of the red blood cells microrheological changes, in Calcium Signaling. 2012, Springer. 1017–38.Google Scholar
  31. 31.
    PINO P, et al., Redox-dependent apoptosis in human endothelial cells after adhesion of plasmodium falciparum-infected erythrocytes. Annals of the New York Academy of Sciences, 2003. 1010(1):582–6.Google Scholar
  32. 32.
    Pepys MB, Baltz ML. Acute phase proteins with special reference to C-reactive protein and related proteins (pentaxins) and serum amyloid A protein. Adv Immunol. 1983;34:141–212.PubMedCrossRefGoogle Scholar
  33. 33.
    Black S, Kushner I, Samols D. C-reactive protein. J Biol Chem. 2004;279(47):48487–90.PubMedCrossRefGoogle Scholar
  34. 34.
    Pepys MB, Hirschfield GM. C-reactive protein: a critical update. J Clin Investig. 2003;111(12):1805–12.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Ridker PM, et al. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med. 2002;347(20):1557–65.PubMedCrossRefGoogle Scholar
  36. 36.
    Ridker PM, et al. Long-term effects of pravastatin on plasma concentration of C-reactive protein. Circulation. 1999;100(3):p. 230–5.PubMedCrossRefGoogle Scholar
  37. 37.
    Libby P, Ridker PM. Inflammation and atherosclerosis: role of C-reactive protein in risk assessment. Am J Med. 2004;116(6):9–16.CrossRefGoogle Scholar
  38. 38.
    Nissen SE, et al. Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease. N Engl J Med. 2005;352(1):29–38.PubMedCrossRefGoogle Scholar
  39. 39.
    Ridker PM, et al. C-reactive protein levels and outcomes after statin therapy. N Engl J Med. 2005;352(1):20–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Ignarro LJ, Napoli C. Novel features of nitric oxide, endothelial nitric oxide synthase, and atherosclerosis. Curr Diabetes Rep. 2005;5(1):17–23.CrossRefGoogle Scholar
  41. 41.
    Valle I, et al. PGC-1α regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovasc Res. 2005;66(3):562–73.PubMedCrossRefGoogle Scholar
  42. 42.
    Zimmet P, Alberti K, Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001;414(6865):782–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Cheng AY, Fantus IG. Oral antihyperglycemic therapy for type 2 diabetes mellitus. Can Med Assoc J. 2005;172(2):213–26.CrossRefGoogle Scholar
  44. 44.
    Guillausseau P-J, et al. Abnormalities in insulin secretion in type 2 diabetes mellitus. Diabetes Metab. 2008;34:p. S43-S48.CrossRefGoogle Scholar
  45. 45.
    Min-Jean Y, Yamamoto Y, Gaynor RB. The anti-inflammatory agents aspirin and salicylate inhibit the activity of IkappaB kinase-beta. Nature. 1998;396(6706):77.CrossRefGoogle Scholar
  46. 46.
    Aguirre V, et al. The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307. J Biol Chem. 2000;275(12):9047–54.PubMedCrossRefGoogle Scholar
  47. 47.
    Hotamisligil GS, et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha-and obesity-induced insulin resistance. Science. 1996;271(5249):665.PubMedCrossRefGoogle Scholar
  48. 48.
    Aguirre V, et al. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem. 2002;277(2):1531–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Paz K, et al. A Molecular Basis for Insulin Resistance elevated serine/threonine phosphorylation of irs-1 and irs-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation. J Biol Chem. 1997;272(47):29911–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Hadi HA, Suwaidi JA. Endothelial dysfunction in diabetes mellitus. Vascular health risk management. 2007;3(6):p. 853.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Muntean C, et al. Biochemistry of hyperglycemia induced vascular dysfunction. Roman J Diabet Nutr Metab Dis. 2013;20(4):419–25.Google Scholar
  52. 52.
    Ishii H, et al. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science. 1996;272(5262):728.PubMedCrossRefGoogle Scholar
  53. 53.
    Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–70.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Rask-Madsen C, King GL. Mechanisms of disease: endothelial dysfunction in insulin resistance and diabetes. Nat Clin Pract Endocrinol Metab. 2007;3(1):46–56.PubMedCrossRefGoogle Scholar
  55. 55.
    Schoch CL, et al., Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences, 2012. 109(16): p. 6241–6246.Google Scholar
  56. 56.
    Headley CA, et al. Nitrones reverse hyperglycemia-induced endothelial dysfunction in bovine aortic endothelial cells. Biochem Pharmacol. 2016;104:108–17.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Del Prato S. Role of glucotoxicity and lipotoxicity in the pathophysiology of Type 2 diabetes mellitus and emerging treatment strategies. Diabetic Med. 2009;26(12):1185–92.PubMedCrossRefGoogle Scholar
  58. 58.
    Musicki B, et al., Inactivation of phosphorylated endothelial nitric oxide synthase (Ser-1177) by O-GlcNAc in diabetes-associated erectile dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(33): p. 11870–11875.Google Scholar
  59. 59.
    McGowan TA, et al. Stimulation of urinary TGF-β and isoprostanes in response to hyperglycemia in humans. Clin J Am Soc Nephrol. 2006;1(2):263–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Gabriely I, et al. Hyperglycemia induces PAI-1 gene expression in adipose tissue by activation of the hexosamine biosynthetic pathway. Atherosclerosis. 2002;160(1):115–22.PubMedCrossRefGoogle Scholar
  61. 61.
    Gage MC, et al. Endothelium-specific insulin resistance leads to accelerated atherosclerosis in areas with disturbed flow patterns: a role for reactive oxygen species. Atherosclerosis. 2013;230(1):131–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Hançer NJ, et al. Insulin and metabolic stress stimulate multisite serine/threonine phosphorylation of insulin receptor substrate 1 and inhibit tyrosine phosphorylation. J Biol Chem. 2014;289(18):12467–84.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Kaplan M, Aviram M, Hayek T. Oxidative stress and macrophage foam cell formation during diabetes mellitus-induced atherogenesis: Role of insulin therapy. Pharmacology therapeutics. 2012;136(2):p. 175–85.PubMedCrossRefGoogle Scholar
  64. 64.
    Wende AR, Symons JD, Abel ED. Mechanisms of lipotoxicity in the cardiovascular system. Curr Hypertension Rep. 2012;14(6):517–31.CrossRefGoogle Scholar
  65. 65.
    Li H, et al. Free fatty acids induce endothelial dysfunction and activate protein kinase C and nuclear factor-κB pathway in rat aorta. Int J Cardiol. 2011;152(2):218–24.PubMedCrossRefGoogle Scholar
  66. 66.
    Inoguchi T, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD (P) H oxidase in cultured vascular cells. Diabetes. 2000;49(11):1939–45.PubMedCrossRefGoogle Scholar
  67. 67.
    Mathew M, Tay E, Cusi K. Elevated plasma free fatty acids increase cardiovascular risk by inducing plasma biomarkers of endothelial activation, myeloperoxidase and PAI-1 in healthy subjects. Cardiovasc Diabetol. 2010;9(1):1.CrossRefGoogle Scholar
  68. 68.
    Förstermann U, Li H. Therapeutic effect of enhancing endothelial nitric oxide synthase (eNOS) expression and preventing eNOS uncoupling. Br J Pharmacol. 2011;164(2):213–23.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Beral V, et al. Ovarian cancer and hormone replacement therapy–Authors’ reply. The Lancet. 2007;370(9591):932–3.CrossRefGoogle Scholar
  70. 70.
    Casadei B. The emerging role of neuronal nitric oxide synthase in the regulation of myocardial function. Exp Physiol. 2006;91(6):943–55.PubMedCrossRefGoogle Scholar
  71. 71.
    Tan KC, et al. Effects of angiotensin II receptor antagonist on endothelial vasomotor function and urinary albumin excretion in type 2 diabetic patients with microalbuminuria. Diabetes/Metab Res Rev. 2002;18(1):71–6.CrossRefGoogle Scholar
  72. 72.
    Kim J-a, et al. Reciprocal relationships between insulin resistance and endothelial dysfunction. Circulation. 2006;113(15):1888–904.PubMedCrossRefGoogle Scholar
  73. 73.
    Williams SB, et al. Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus. J Am Coll Cardiol. 1996;27(3):567–74.PubMedCrossRefGoogle Scholar
  74. 74.
    Tesfamariam B, Brown ML, Cohen RA. Elevated glucose impairs endothelium-dependent relaxation by activating protein kinase C. J Clin Investig. 1991;87(5):1643.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Title LM, et al. Oral glucose loading acutely attenuates endothelium-dependent vasodilation in healthy adults without diabetes: an effect prevented by vitamins C and E. J Am Coll Cardiol. 2000;36(7):2185–91.PubMedCrossRefGoogle Scholar
  76. 76.
    Pieper GM, Moore-Hilton G, Roza AM. Evaluation of the mechanism of endothelial dysfunction in the genetically-diabetic BB rat. Life Sci. 1996;58(9):PL147–PL152.PubMedCrossRefGoogle Scholar
  77. 77.
    Du XL, et al. Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Investig. 2001;108(9):1341–8.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Veves A, et al. Endothelial dysfunction and the expression of endothelial nitric oxide synthetase in diabetic neuropathy, vascular disease, and foot ulceration. Diabetes. 1998;47(3):457–63.PubMedCrossRefGoogle Scholar
  79. 79.
    Boudi BF. Noncoronary Atherosclerosis. Medscape.Google Scholar
  80. 80.
    Brustolin S, Giugliani R, Félix T. Genetics of homocysteine metabolism and associated disorders. Braz J Med Biol Res. 2010;43(1):1–7.PubMedCrossRefGoogle Scholar
  81. 81.
    Jayaraman A, Pike CJ. Alzheimer’s disease and type 2 diabetes: multiple mechanisms contribute to interactions. Current diabetes reports. 2014;14(4):1–9.CrossRefGoogle Scholar
  82. 82.
    Huang T, et al. Cardiovascular pathogenesis in hyperhomocysteinemia. Asia Pacific J Clin Nutr. 2008;17(1):8–16.Google Scholar
  83. 83.
    Corretti MC, et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol. 2002;39(2):257–65.PubMedCrossRefGoogle Scholar
  84. 84.
    Tasatargil A, Sadan G, Karasu E. Homocysteine-induced changes in vascular reactivity of guinea-pig pulmonary arteries: role of the oxidative stress and poly (ADP-ribose) polymerase activation. Pulmonary pharmacology & therapeutics, 2007. 20(3):265–72.Google Scholar
  85. 85.
    Yan TT, et al. Homocysteine impaired endothelial function through compromised vascular endothelial growth factor/Akt/endothelial nitric oxide synthase signalling. Clin Exp Pharmacol Physiol. 2010;37(11):1071–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Lima CP, et al. Vitamin B-6 deficiency suppresses the hepatic transsulfuration pathway but increases glutathione concentration in rats fed AIN-76A or AIN-93G diets. J Nutr. 2006;136(8):2141–7.PubMedCrossRefGoogle Scholar
  87. 87.
    Jahangir E, et al. The effect of L-arginine and creatine on vascular function and homocysteine metabolism. Vascular Med. 2009;14(3):239–48.CrossRefGoogle Scholar
  88. 88.
    Lentz SR, Rodionov RN, Dayal S. Hyperhomocysteinemia, endothelial dysfunction, and cardiovascular risk: the potential role of ADMA. Atherosclerosis Supplements. 2003;4(4):61–5.PubMedCrossRefGoogle Scholar
  89. 89.
    Sydow K, et al. ADMA and oxidative stress are responsible for endothelial dysfunction in hyperhomocyst(e)inemia: effects of L-arginine and B vitamins. Cardiovascular Res. 2003;57(1):244–52.CrossRefGoogle Scholar
  90. 90.
    Tawakol A, et al. Hyperhomocyst(e)inemia is associated with impaired endothelium-dependent vasodilation in humans. Circulation. 1997;95(5):1119–21.PubMedCrossRefGoogle Scholar
  91. 91.
    Tyagi N, et al. Mechanisms of homocysteine-induced oxidative stress. Am J Physiol Heart Circ Physiol. 2005;289(6):H2649-H2656.CrossRefGoogle Scholar
  92. 92.
    Skolnick HS, et al. The natural history of peanut allergy. J Allergy Clin Immunol. 2001;107(2):367–74.PubMedCrossRefGoogle Scholar
  93. 93.
    Lacy P. Secretion of cytokines and chemokines by innate immune cells. 2015: Frontiers Media SA.Google Scholar
  94. 94.
    Dong Y, et al. Nitrative stress participates in endothelial progenitor cell injury in hyperhomocysteinemia. PloS One. 2016;11(7):e0158672.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Hong S-Y, Yang D-H, Chang S-K. The relationship between plasma homocysteine and amino acid concentrations in patients with end-stage renal disease. J Renal Nutr. 1998;8(1):34–9.CrossRefGoogle Scholar
  96. 96.
    van Dijk SC, et al., Effect of vitamin B12 and folic acid supplementation on biomarkers of endothelial function and inflammation among elderly individuals with hyperhomocysteinemia. Vascular Medicine, 2016;1358863 × 15622281.Google Scholar
  97. 97.
    Wang X-C, et al. ER stress mediates homocysteine-induced endothelial dysfunction: Modulation of IK Ca and SK Ca channels. Atherosclerosis. 2015;242(1):191–8.PubMedCrossRefGoogle Scholar
  98. 98.
    Ruilope LM, Schmieder RE. Left ventricular hypertrophy and clinical outcomes in hypertensive patients. Am J Hypertension. 2008;21(5):500–8.CrossRefGoogle Scholar
  99. 99.
    Sarnak MJ, et al. Kidney disease as a risk factor for development of cardiovascular disease a statement from the American Heart Association Councils on kidney in cardiovascular disease, high blood pressure research, clinical cardiology, and epidemiology and prevention. Circulation. 2003;108(17):2154–69.PubMedCrossRefGoogle Scholar
  100. 100.
    Arora P, Arora A, Sharma S. Vascular endothelium dysfunction and hypertension: insight on molecular basics.Google Scholar
  101. 101.
    Kitada K, et al. High salt intake reprioritizes osmolyte and energy metabolism for body fluid conservation. J Clin Investig. 2017;127(5):1944–59.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Uehata M, et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature. 1997;389(6654):990–4.PubMedCrossRefGoogle Scholar
  103. 103.
    Dzau VJ. Implications of local angiotensin production in cardiovascular physiology and pharmacology. Am J Cardiol. 1987;59(2):A59–A65.CrossRefGoogle Scholar
  104. 104.
    Nishiyama A, et al. New approaches to blockade of the renin-angiotensin-aldosterone system: mineralocorticoid-receptor blockers exert antihypertensive and renoprotective effects independently of the renin-angiotensin system. J Pharmacol Sci. 2010;113(4):310–4.PubMedCrossRefGoogle Scholar
  105. 105.
    Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 2000;87(10):840–4.PubMedCrossRefGoogle Scholar
  106. 106.
    Nishimura H, et al. The effects of angiotensin metabolites on the regulation of coagulation and fibrinolysis in cultured rat aortic endothelial cells. Thrombosis Haemostasis. 1999;82(5):1516–21.PubMedGoogle Scholar
  107. 107.
    Nishimura H, et al. Angiotensin II increases plasminogen activator inhibitor-1 and tissue factor mRNA expression without changing that of tissue type plasminogen activator or tissue factor pathway inhibitor in cultured rat aortic endothelial cells. Thrombosis Haemostasis. 1997;77(6):1189–95.PubMedCrossRefGoogle Scholar
  108. 108.
    Ishida M, et al. Angiotensin II activates pp60c-src in vascular smooth muscle cells. Circ Res. 1995;77(6):1053–9.PubMedCrossRefGoogle Scholar
  109. 109.
    Badyal D, Lata H, Dadhich A. Animal models of hypertension and effect of drugs. Indian J Pharmacol. 2003;35(6):349–62.Google Scholar
  110. 110.
    Griendling KK, et al. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res. 1994;74(6):1141–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Brown JH, Del Re DP, Sussman MA. The Rac and Rho hall of fame a decade of hypertrophic signaling hits. Circ Res. 2006;98(6):730–42.PubMedCrossRefGoogle Scholar
  112. 112.
    Burnstock G. Purinergic nerves. Pharmacol Rev. 1972;24(3):509–81.PubMedGoogle Scholar
  113. 113.
    Vecchione C, et al. Protection from angiotensin II–mediated vasculotoxic and hypertensive response in mice lacking PI3Kγ. J Exp Med. 2005;201(8):1217–28.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Rubattu S, Stanzione R, Volpe M. Mitochondrial dysfunction contributes to hypertensive target organ damage: lessons from an animal model of human disease. Oxidative Medicine and Cellular Longevity, 2016.Google Scholar
  115. 115.
    Maury E, Brichard S. Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol Cell Endocrinol. 2010;314(1):1–16.PubMedCrossRefGoogle Scholar
  116. 116.
    Harrington EO, et al. Adenosine induces endothelial apoptosis by activating protein tyrosine phosphatase: a possible role of p38α. Am J Physiol Lung Cell Mol Physiol. 2000;279(4):L733–L742.PubMedCrossRefGoogle Scholar
  117. 117.
    Touyz RM. Reactive oxygen species as mediators of calcium signaling by angiotensin II: implications in vascular physiology and pathophysiology. Antioxidants Redox Signal. 2005;7(9–10):1302–14.CrossRefGoogle Scholar
  118. 118.
    Bendall JK, et al. Tetrahydrobiopterin in cardiovascular health and disease. Antioxidants redox signaling. 2014;20(18):p. 3040–77.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Hausding M, et al., Molecular Mechanisms of the Crosstalk Between Mitochondria and NADPH Oxidase Through Reactive Oxygen Species—Studies in White Blood Cells and in Animal Models.Google Scholar
  120. 120.
    Jin M, et al., Uric acid, hyperuricemia and vascular diseases. Frontiers in bioscience: a journal and virtual library. 2012. 17:656.Google Scholar
  121. 121.
    Chaudhary K, et al. Uric Acid-key ingredient in the recipe for cardiorenal metabolic syndrome. Cardiorenal Med. 2013;3(3):208–20.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Su J, et al. Anti-hyperuricemic and nephroprotective effects of Rhizoma Dioscoreae septemlobae extracts and its main component dioscin via regulation of mOAT1, mURAT1 and mOCT2 in hypertensive mice. Arch Pharmacal Res. 2014;37(10):1336–44.CrossRefGoogle Scholar
  123. 123.
    Wu X-H, et al. Riparoside B and timosaponin J, two steroidal glycosides from Smilax riparia, resist to hyperuricemia based on URAT1 in hyperuricemic mice. Phytomedicine. 2014;21(10):1196–201.PubMedCrossRefGoogle Scholar
  124. 124.
    Matsuo H, et al. ABCG2 dysfunction causes hyperuricemia due to both renal urate underexcretion and renal urate overload. Sci Rep. 2014;4:3755.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Puddu P, et al. The relationships among hyperuricemia, endothelial dysfunction, and cardiovascular diseases: molecular mechanisms and clinical implications. J Cardiol. 2012;59(3):235–42.PubMedCrossRefGoogle Scholar
  126. 126.
    Puddu P, et al. The molecular sources of reactive oxygen species in hypertension. Blood Pressure. 2008;17(2):70–7.PubMedCrossRefGoogle Scholar
  127. 127.
    Stocker R, Keaney J. New insights on oxidative stress in the artery wall. J Thromb Haemost. 2005;3(8):1825–34.PubMedCrossRefGoogle Scholar
  128. 128.
    Ohara Y, Peterson TE, Harrison DG. Hypercholesterolemia increases endothelial superoxide anion production. J Clin Investig. 1993;91(6):2546.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Meneshian A, Bulkley GB. The physiology of endothelial xanthine oxidase: from urate catabolism to reperfusion injury to inflammatory signal transduction. Microcirculation. 2002;9(3):161–75.PubMedCrossRefGoogle Scholar
  130. 130.
    Berry CE, Hare JM. Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. J Physiol. 2004;555(3):589–606.PubMedCrossRefGoogle Scholar
  131. 131.
    George J, Struthers AD. Role of urate, xanthine oxidase and the effects of allopurinol in vascular oxidative stress. Vasc Health Risk Manag. 2009;5(1):265–72.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Feig DI, Kang D-H, Johnson RJ. Uric acid and cardiovascular risk. N Engl J Med. 2008;359(17):1811–21.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Panis C, et al. Oxidative stress and hematological profiles of advanced breast cancer patients subjected to paclitaxel or doxorubicin chemotherapy. Breast Cancer Res Treatment. 2012;133(1):89–97.CrossRefGoogle Scholar
  134. 134.
    Edwards NL. The role of hyperuricemia in vascular disorders. Curr Opin Rheumatol. 2009;21(2):132–7.PubMedCrossRefGoogle Scholar
  135. 135.
    Kanellis J, Kang D-H. Uric acid as a mediator of endothelial dysfunction, inflammation, and vascular disease. In: Seminars in nephrology. 2005. Elsevier.Google Scholar
  136. 136.
    Kanellis J, et al. Uric acid stimulates monocyte chemoattractant protein-1 production in vascular smooth muscle cells via mitogen-activated protein kinase and cyclooxygenase-2. Hypertension. 2003;41(6):1287–93.PubMedCrossRefGoogle Scholar
  137. 137.
    Castillo-Martínez D, et al. Levels of uric acid may predict the future development of pulmonary hypertension in systemic lupus erythematosus: a seven-year follow-up study. Lupus. 2016;25(1):61–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PharmacologyI.S.F College of PharmacyMogaIndia
  2. 2.Department of Pharmacology, School of Pharmaceutical SciencesCT UniversityLudhianaIndia

Personalised recommendations