Skip to main content

Advertisement

Log in

Nature is the best source of anti-inflammatory drugs: indexing natural products for their anti-inflammatory bioactivity

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objectives

The aim was to index natural products for less expensive preventive or curative anti-inflammatory therapeutic drugs.

Materials

A set of 441 anti-inflammatory drugs representing the active domain and 2892 natural products representing the inactive domain was used to construct a predictive model for bioactivity-indexing purposes.

Method

The model for indexing the natural products for potential anti-inflammatory activity was constructed using the iterative stochastic elimination algorithm (ISE). ISE is capable of differentiating between active and inactive anti-inflammatory molecules.

Results

By applying the prediction model to a mix set of (active/inactive) substances, we managed to capture 38% of the anti-inflammatory drugs in the top 1% of the screened set of chemicals, yielding enrichment factor of 38. Ten natural products that scored highly as potential anti-inflammatory drug candidates are disclosed. Searching the PubMed revealed that only three molecules (Moupinamide, Capsaicin, and Hypaphorine) out of the ten were tested and reported as anti-inflammatory. The other seven phytochemicals await evaluation for their anti-inflammatory activity in wet lab.

Conclusion

The proposed anti-inflammatory model can be utilized for the virtual screening of large chemical databases and for indexing natural products for potential anti-inflammatory activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Murakami M, Hirano T. The molecular mechanisms of chronic inflammation development. Front Immunol. 2012;3:323. doi:10.3389/fimmu.2012.00323.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zeinali M, Rezaee SA, Hosseinzadeh H. An overview on immunoregulatory and anti-inflammatory properties of chrysin and flavonoids substances. Biomed Pharmacother. 2017;92:998–1009. doi:10.1016/j.biopha.2017.06.003.

    Article  CAS  PubMed  Google Scholar 

  3. Schwager J, Richard N, Widmer F, Raederstorff D. Resveratrol distinctively modulates the inflammatory profiles of immune and endothelial cells. BMC Complement Altern Med. 2017;17(1):309. doi:10.1186/s12906-017-1823-z.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mkhize NVP, Qulu L, Mabandla MV. The effect of quercetin on pro- and anti-inflammatory cytokines in a prenatally stressed rat model of febrile seizures. J Exp Neurosci. 2017;11:1179069517704668. doi:10.1177/1179069517704668.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fenni S, Hammou H, Astier J, Bonnet L, Karkeni E, Couturier C, et al. Lycopene and tomato powder supplementation similarly inhibit high-fat diet induced obesity, inflammatory response, and associated metabolic disorders. Mol Nutr Food Res. 2017;. doi:10.1002/mnfr.201601083.

    PubMed  Google Scholar 

  6. Dai SX, Li WX, Li GH, Huang JF. Proteome-wide prediction of targets for aspirin: new insight into the molecular mechanism of aspirin. PeerJ. 2016;4:e1791. doi:10.7717/peerj.1791.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Filannino P, Cavoski I, Thlien N, Vincentini O, De Angelis M, Silano M, et al. Lactic acid fermentation of cactus cladodes (Opuntia ficus-indica L.) generates flavonoid derivatives with antioxidant and anti-inflammatory properties. PLoS One. 2016;11(3):e0152575. doi:10.1371/journal.pone.0152575.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kuo PC, Liao YR, Hung HY, Chuang CW, Hwang TL, Huang SC, et al. Anti-inflammatory and neuroprotective constituents from the peels of Citrus grandis. Molecules. 2017;. doi:10.3390/molecules22060967.

    Google Scholar 

  9. Lee E, Kim SG, Park NY, Park HH, Jeong KT, Choi J, et al. Anti-inflammatory effects of KOTMIN13: a mixed herbal medicine in LPS-stimulated RAW 264.7 cells and mouse edema models. Pharmacogn Mag. 2017;13(50):216–21. doi:10.4103/0973-1296.204548.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kacergius T, Abu-Lafi S, Kirkliauskiene A, Gabe V, Adawi A, Rayan M, et al. Inhibitory capacity of Rhus coriaria L. extract and its major component methyl gallate on Streptococcus mutants biofilm formation by optical profilometry: potential applications for oral health. Mol Med Rep. 2017;16(1):949–56. doi:10.3892/mmr.2017.6674.

    Article  CAS  PubMed  Google Scholar 

  11. Frank A, Abu-Lafi S, Adawi A, Schwed JS, Stark H, Rayan A. From medicinal plant extracts to defined chemical compounds targeting the histamine H4 receptor: Curcuma longa in the treatment of inflammation. Inflamm Res. 2017;. doi:10.1007/s00011-017-1075-x.

    Google Scholar 

  12. Dutartre P. Inflammasomes and natural ingredients towards new anti-inflammatory agents. Molecules. 2016;. doi:10.3390/molecules21111492.

    PubMed  Google Scholar 

  13. Paoletta S, Steventon GB, Wildeboer D, Ehrman TM, Hylands PJ, Barlow DJ. Screening of herbal constituents for aromatase inhibitory activity. Bioorg Med Chem. 2008;16(18):8466–70.

    Article  CAS  PubMed  Google Scholar 

  14. Shahaf N, Pappalardo M, Basile L, Guccione S, Rayan A. How to choose the suitable template for homology modelling of GPCRs: 5-HT7 receptor as a test case. Mol Inform. 2016;35(8–9):414–23. doi:10.1002/minf.201501029.

    Article  CAS  PubMed  Google Scholar 

  15. Pappalardo M, Rayan M, Abu-Lafi S, Leonardi ME, Milardi D, Guccione S, et al. Homology-based modeling of rhodopsin-like family members in the inactive state: structural analysis and deduction of tips for modeling and optimization. Mol Inform. 2017;. doi:10.1002/minf.201700014.

    PubMed  Google Scholar 

  16. Luksch T, Chan NS, Brass S, Sotriffer CA, Klebe G, Diederich WE. Computer-aided design and synthesis of nonpeptidic plasmepsin II and IV inhibitors. ChemMedChem. 2008;3(9):1323–36.

    Article  CAS  PubMed  Google Scholar 

  17. Schuller A, Schneider G. Identification of hits and lead structure candidates with limited resources by adaptive optimization. J Chem Inf Model. 2008;48(7):1473–91.

    Article  PubMed  Google Scholar 

  18. Zaheer-ul H, Uddin R, Yuan H, Petukhov PA, Choudhary MI, Madura JD. Receptor-based modeling and 3D-QSAR for a quantitative production of the butyrylcholinesterase inhibitors based on genetic algorithm. J Chem Inf Model. 2008;48(5):1092–103.

    Article  PubMed  Google Scholar 

  19. Hao M, Zhang S, Qiu J. Toward the prediction of FBPase inhibitory activity using chemoinformatic methods. Int J Mol Sci. 2012;13(6):7015–37. doi:10.3390/ijms13067015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li H, Yap CW, Ung CY, Xue Y, Li ZR, Han LY, et al. Machine learning approaches for predicting compounds that interact with therapeutic and ADMET related proteins. J Pharm Sci. 2007;96(11):2838–60.

    Article  CAS  PubMed  Google Scholar 

  21. Lusci A, Pollastri G, Baldi P. Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules. J Chem Inf Model. 2013;53(7):1563–75. doi:10.1021/ci400187y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Plewczynski D, von Grotthuss M, Spieser SA, Rychlewski L, Wyrwicz LS, Ginalski K, et al. Target specific compound identification using a support vector machine. Comb Chem High Throughput Screen. 2007;10(3):189–96.

    Article  CAS  PubMed  Google Scholar 

  23. Heikamp K, Bajorath J. Comparison of confirmed inactive and randomly selected compounds as negative training examples in support vector machine-based virtual screening. J Chem Inf Model. 2013;53(7):1595–601. doi:10.1021/ci4002712.

    Article  CAS  PubMed  Google Scholar 

  24. Shen M, Beguin C, Golbraikh A, Stables JP, Kohn H, Tropsha A. Application of predictive QSAR models to database mining: identification and experimental validation of novel anticonvulsant compounds. J Med Chem. 2004;47(9):2356–64.

    Article  CAS  PubMed  Google Scholar 

  25. Rayan A. New vistas in GPCR 3D structure prediction. J Mol Model. 2010;16(2):183–91.

    Article  CAS  PubMed  Google Scholar 

  26. Efremov RG, Chugunov AO, Pyrkov TV, Priestle JP, Arseniev AS, Jacoby E. Molecular lipophilicity in protein modeling and drug design. Curr Med Chem. 2007;14(4):393–415.

    Article  CAS  PubMed  Google Scholar 

  27. Deeb O, Goodarzi M. Exploring QSARs for inhibitory activity of non-peptide HIV-1 protease inhibitors by GA-PLS and GA-SVM. Chem Biol Drug Des. 2010;75(5):506–14. doi:10.1111/j.1747-0285.2010.00953.x.

    Article  CAS  PubMed  Google Scholar 

  28. Deeb O, Jawabreh S, Goodarzi M. Exploring QSARs of vascular endothelial growth factor receptor-2 (VEGFR-2) tyrosine kinase inhibitors by MLR, PLS and PC-ANN. Curr Pharm Des. 2013;19(12):2237–44.

    Article  CAS  PubMed  Google Scholar 

  29. Mussa HY, Hawizy L, Nigsch F, Glen RC. Classifying large chemical data sets: using a regularized potential function method. J Chem Inf Model. 2011;51(1):4–14. doi:10.1021/ci100022u.

    Article  CAS  PubMed  Google Scholar 

  30. Glick M, Goldblum A. A novel energy-based stochastic method for positioning polar protons in protein structures from X-rays. Proteins. 2000;38(3):273–87. doi:10.1002/(SICI)1097-0134(20000215)38:3<273:AID-PROT4>3.0.CO;2-I.

    Article  CAS  PubMed  Google Scholar 

  31. Glick M, Rayan A, Goldblum A. A stochastic algorithm for global optimization and for best populations: a test case of side chains in proteins. Proc Natl Acad Sci USA. 2002;99(2):703–8. doi:10.1073/pnas.022418199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Michaeli A, Rayan A. Modeling ensembles of loop conformations by iterative stochastic elimination. Lett Drug Des Discov. 2016;13(3):1–6.

    Google Scholar 

  33. Rayan A, Senderowitz H, Goldblum A. Exploring the conformational space of cyclic peptides by a stochastic search method. J Mol Gr Model. 2004;22(5):319–33.

    Article  CAS  Google Scholar 

  34. Rayan A, Noy E, Chema D, Levitzki A, Goldblum A. Stochastic algorithm for kinase homology model construction. Curr Med Chem. 2004;11(6):675–92.

    Article  CAS  PubMed  Google Scholar 

  35. Rayan A, Marcus D, Goldblum A. Predicting oral druglikeness by iterative stochastic elimination. J Chem Inf Model. 2010;50(3):437–45. doi:10.1021/ci9004354.

    Article  CAS  PubMed  Google Scholar 

  36. Rayan A, Falah M, Raiyn J, Da’adoosh B, Kadan S, Zaid H, et al. Indexing molecules for their hERG liability. Eur J Med Chem. 2013;65C:304–14. doi:10.1016/j.ejmech.2013.04.059.

    Article  Google Scholar 

  37. Pappalardo M, Shachaf N, Basile L, Milardi D, Zeidan M, Raiyn J, et al. Sequential application of ligand and structure based modeling approaches to index chemicals for their hH4R antagonism. PLoS One. 2014;9(10):e109340. doi:10.1371/journal.pone.0109340.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zaid H, Raiyn J, Osman M, Falah M, Srouji S, Rayan A. In silico modeling techniques for predicting the tertiary structure of human H4 receptor. Front Biosci (Landmark Ed). 2016;21:597–619.

    Article  Google Scholar 

  39. Ren X, Zhang M, Chen L, Zhang W, Huang Y, Luo H, et al. The anti-inflammatory effects of Yunnan Baiyao are involved in regulation of the phospholipase A2/arachidonic acid metabolites pathways in acute inflammation rat model. Mol Med Rep. 2017;. doi:10.3892/mmr.2017.7104.

    Google Scholar 

  40. Zatsepin M, Mattes A, Rupp S, Finkelmeier D, Basu A, Burger-Kentischer A, et al. Computational discovery and experimental confirmation of TLR9 receptor antagonist leads. J Chem Inf Model. 2016;56(9):1835–46. doi:10.1021/acs.jcim.6b00070.

    Article  CAS  PubMed  Google Scholar 

  41. Rayan A. New tips for structure prediction by comparative modeling. Bioinformation. 2009;3(6):263–7.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1–3):3–26.

    Article  CAS  PubMed  Google Scholar 

  43. Hann MM, Oprea TI. Pursuing the leadlikeness concept in pharmaceutical research. Curr Opin Chem Biol. 2004;8(3):255–63. doi:10.1016/j.cbpa.2004.04.003.

    Article  CAS  PubMed  Google Scholar 

  44. Jiang Y, Yu L, Wang MH. N-trans-feruloyltyramine inhibits LPS-induced NO and PGE2 production in RAW 264.7 macrophages: involvement of AP-1 and MAP kinase signalling pathways. Chem Biol Interact. 2015;235:56–62. doi:10.1016/j.cbi.2015.03.029.

    Article  CAS  PubMed  Google Scholar 

  45. Park JB. Isolation and characterization of N-feruloyltyramine as the P-selectin expression suppressor from garlic (Allium sativum). J Agric Food Chem. 2009;57(19):8868–72. doi:10.1021/jf9018382.

    Article  CAS  PubMed  Google Scholar 

  46. Gooding SM, Canter PH, Coelho HF, Boddy K, Ernst E. Systematic review of topical capsaicin in the treatment of pruritus. Int J Dermatol. 2010;49(8):858–65. doi:10.1111/j.1365-4632.2010.04537.x.

    Article  PubMed  Google Scholar 

  47. Gevorgyan A, Segboer C, Gorissen R, van Drunen CM, Fokkens W. Capsaicin for non-allergic rhinitis. Cochrane Database Syst Rev. 2015;7:CD010591. doi:10.1002/14651858.CD010591.pub2.

    Google Scholar 

  48. Toyoda T, Shi L, Takasu S, Cho YM, Kiriyama Y, Nishikawa A, et al. Anti-inflammatory effects of capsaicin and piperine on Helicobacter pylori-induced chronic gastritis in mongolian gerbils. Helicobacter. 2016;21(2):131–42. doi:10.1111/hel.12243.

    Article  CAS  PubMed  Google Scholar 

  49. Sun H, Cai W, Wang X, Liu Y, Hou B, Zhu X, et al. Vaccaria hypaphorine alleviates lipopolysaccharide-induced inflammation via inactivation of NFkappaB and ERK pathways in Raw 264.7 cells. BMC Complement Altern Med. 2017;17(1):120. doi:10.1186/s12906-017-1635-1.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lin CF, Hwang TL, Chien CC, Tu HY, Lay HL. A new hydroxychavicol dimer from the roots of Piper betle. Molecules. 2013;18(3):2563–70. doi:10.3390/molecules18032563.

    Article  CAS  PubMed  Google Scholar 

  51. Ganguly S, Mula S, Chattopadhyay S, Chatterjee M. An ethanol extract of Piper betle Linn. mediates its anti-inflammatory activity via down-regulation of nitric oxide. J Pharm Pharmacol. 2007;59(5):711–8. doi:10.1211/jpp.59.5.0012.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Al-Qasemi Research Foundation (Grant no. 954000) and the Ministry of Science, Space and Technology, Israel. We declare that the funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwar Rayan.

Additional information

Responsible Editor: John Di Battista.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 358 kb)

Supplementary material 2 (PDF 244 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aswad, M., Rayan, M., Abu-Lafi, S. et al. Nature is the best source of anti-inflammatory drugs: indexing natural products for their anti-inflammatory bioactivity. Inflamm. Res. 67, 67–75 (2018). https://doi.org/10.1007/s00011-017-1096-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-017-1096-5

Keywords

Navigation