Inflammation Research

, Volume 66, Issue 3, pp 249–258 | Cite as

Genetic polymorphisms of IL-18 rs1946518 and IL-1β rs16944 are associated with prognosis and survival of acute myeloid leukemia

  • Hong Wang
  • Mingqiang Hua
  • Shukang Wang
  • Jie Yu
  • Chen Chen
  • Xueyun Zhao
  • Chen Zhang
  • Chaoqin Zhong
  • Ruiqing Wang
  • Na He
  • Ming Hou
  • Daoxin MaEmail author
Original Research Paper



Though the pathogenesis of AML is still unknown, accumulating evidence revealed that immune response plays a vital part in it. NLRP3 inflammasome as a component of immune system has been found related to several cancers. The single nucleotide polymorphisms (SNPs) of NLRP3 inflammasome genes may be related to pathogenesis and prognosis of AML.

Methods and results

We determined polymorphisms of NLRP3 (rs35829419), CARD8 (rs2043211), IL-1β (rs16944), IL-18 (rs1946518) and NF-κB −94 ins/del ATTG in de novo AML patients to find out whether they play roles in the susceptibility and severity of AML. In our study, 383 AML cases and 300 randomly selected healthy individuals were examined for the polymorphisms and expression of NLRP3 genes. IL-1β (rs16944) polymorphism in different risk AML subgroups was found statistically different, with more GA genotype in favorable-risk cytogenetics group. We also demonstrated that the bone marrow blasts of patients carrying IL-18 (rs1946518) GG or GT genotype were higher than patients of TT genotype. IL-18 plasma level of patients with IL-18 (rs1946518) GT or TT genotype was higher than GG genotype. Moreover, the GT genotype of IL-18 (rs1946518) led to statistically poorer AML-specific survival.


IL-1β (rs16944) and IL-18 (rs1946518) may be served as potential predictors for AML.


Acute myeloid leukemia Polymorphism Inflammasome, NLRP3 Susceptibility 



This work was supported by grants from National Natural Science Foundation of China (No. 81470319, No. 81170515).

Compliance with ethical standards

Conflict of interest

We declare that there is no conflict of interest.


  1. 1.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;2011(144):646–74.CrossRefGoogle Scholar
  2. 2.
    Stein JP, Lieskovsky G, Cote R, Groshen S, Feng AC, et al. Radical cystectomy in the treatment of invasive bladder cancer: long-term results in 1054 patients. J Clin Oncol. 2001;19:666–75.PubMedGoogle Scholar
  3. 3.
    Kinoshita T, Imamura R, Kushiyama H, Suda T, et al. NLRP3 mediates NF-κB activation and cytokine induction in microbially induced and sterile inflammation. PLoS One. 2015;10(3):e0119179.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kanneganti TD, Lamkanfi M, Nunez G. Intracellular NOD-like receptors in host defense and disease. Immunity. 2007;27(4):549–59.CrossRefPubMedGoogle Scholar
  5. 5.
    Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol. 2009;183(2):787–91.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Verma D, Bivik C, Farahani E, Synnerstad I, et al. Inflammasome polymorphisms confer susceptibility to sporadic malignant melanoma. Pigment Cell Melanoma Res. 2012;25:506–13.CrossRefPubMedGoogle Scholar
  7. 7.
    Ungerbäck J, Belenki D, Jawad ul-Hassan A, Fredrikson M, et al. Genetic variation and alterations of genes involved in NFκB/TNFAIP3- and NLRP3-inflammasome signaling affect susceptibility and outcome of colorectal cancer. Carcinogenesis. 2012;33(11):2126–34.CrossRefPubMedGoogle Scholar
  8. 8.
    Bouchier-Hayes L, Conroy H, Egan H, Adrain C, Creagh EM, et al. CARDINAL, a novel caspase recruitment domain protein, is an inhibitor of multiple NF-kappa B activation pathways. J Biol Chem. 2001;276(47):44069–77.CrossRefPubMedGoogle Scholar
  9. 9.
    Ko DC, Shukla KP, Fong C, Wasnick M, et al. A genome-wide in vitro bacterial-infection screen reveals human variation in the host response associated with inflammatory disease. Am J Hum Genet. 2009;85(2):214–27.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Back LK, Farias TD, da Cunha PA, Muniz YC, Ribeiro MC, et al. Functional polymorphisms of interleukin-18 gene and risk of breast cancer in a Brazilian population. Tissue Antigens. 2014;84(2):229–33.CrossRefPubMedGoogle Scholar
  11. 11.
    Pratesi C, Bortolin MT, Bidoli E, Tedeschi R, Vaccher E, et al. Interleukin-10 and interleukin-18 promoter polymorphisms in an Italian cohort of patients with undifferentiated carcinoma of nasopharyngeal type. Cancer Immunol Immunother. 2006;55:23–30.CrossRefPubMedGoogle Scholar
  12. 12.
    Farjadfar A, Mojtahedi Z, Ghayumi MA, Erfani N, Haghshenas MR, et al. Interleukin-18 promoter polymorphism is associated with lung cancer: a case–control study. Acta Oncol. 2006;48:971–62006.CrossRefGoogle Scholar
  13. 13.
    Bidwell J, Keen L, Gallagher G, Kimberly R, Huizinga T, et al. Cytokine gene polymorphism in human disease: on-line databases. Genes Immun. 1999;1(1):3–19.CrossRefPubMedGoogle Scholar
  14. 14.
    Qi T, Wang Q, Zheng L, Yang HL, Bao J, et al. Correlation of serum IL-18 level and IL-18 gene promoter polymorphisms to the risk of cervical cancer. NAN Fang Yi Ke Da Xue Xue Bao. 2008;28:754–7.PubMedGoogle Scholar
  15. 15.
    Blank V, Kourilsky P, Israel A. NF-kappa B and related proteins: Rel/dorsal homologies meet ankyrin-like repeats. Trends Biochem Sci. 1992;17:135–40.CrossRefPubMedGoogle Scholar
  16. 16.
    Arisawa T, Tahara T, Shiroeda H, Yamada K, Nomura T, et al. Functional promoter polymorphisms of NFκB1 influence susceptibility to the diffuse type of gastric cancer. Oncol Rep. 2013;30:3013–9.PubMedGoogle Scholar
  17. 17.
    Fan Y, Yu W, Ye P, Wang H, Wang Z, et al. NF-KB1 insertion/deletion promoter polymorphism increases the risk of advanced ovarian cancer in a Chinese population. DNA Cell Biol. 2008;30:241–5.CrossRefGoogle Scholar
  18. 18.
    Zhang P, Wei Q, Li X, Wang K, Zeng H, et al. A functional insertion/deletion polymorphism in the promoter region of the NF-KB1 gene increases susceptibility for prostate cancer. Cancer Genet Cytogenet. 2009;191:73–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Lin SC, Liu CJ, Yeh WI, Lui MT, Chang KW, et al. Functional polymorphism in NF-KB1 promoter is related to the risks of oral squamous cell carcinoma occurring on older male areca (betel) chewers. Cancer Lett. 2006;243:47–54.CrossRefPubMedGoogle Scholar
  20. 20.
    Jin J. Chinese guide for refractory AML patients. Chin J Hematol. 2011;12(12):887–8.Google Scholar
  21. 21.
    Verma D, Särndahl E, Andersson H, Eriksson P, Fredrikson M, et al. The Q705K polymorphism in NLRP3 is a gain-of-function alteration leading to excessive interleukin-1b and IL-18 production. PLoS One. 2012;7(4):e34977.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ungerbäck J, Belenki D, Jawad ul-Hassan A, Fredrikson M, Fransén K, et al. Genetic variation and alterations of genes involved in NFkappaB/TNFAIP3- and NLRP3-inflammasome signaling affect susceptibility and outcome of colorectal cancer. Carcinogenesis. 2012;2012(33):2126–34.CrossRefGoogle Scholar
  23. 23.
    Arend WP, Palmer G, Gabay C. IL-1, IL-18, and IL-33 families of cytokines. Immunol Rev. 2008;223:20–38.CrossRefPubMedGoogle Scholar
  24. 24.
    Alexandrakis MG, Passam FH, Sfiridaki K, Moschandrea J, et al. Interleukin-18 in multiple myeloma patients: serum levels in relation to response to treatment and survival. Leuk Res. 2004;28:259–66.CrossRefPubMedGoogle Scholar
  25. 25.
    Tsai HT, Hsin CH, Hsieh YH, Tang CH, Yang SF, Lin CW, et al. Impact of interleukin-18 polymorphisms −607A/C & −137G/C on oral cancer occurrence and clinical progression. PLoS One. 2013;8(12):e83572.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Takada T, Suzuki E, Morohashi K, Gejyo F, et al. Association of single nucleotide polymorphisms in the IL-18 gene with sarcoidosis in a Japanese population. Tissue Antigens. 2002;60(1):36–42.CrossRefPubMedGoogle Scholar
  27. 27.
    Sáenz-López P, Carretero R, Vazquez F, Martin J, Sánchez E, et al. Impact of interleukin-18 polymorphisms-607 and -137 on clinical characteristics of renal cell carcinoma patients. Hum Immunol. 2010;71:309–13.CrossRefPubMedGoogle Scholar
  28. 28.
    Ying B, Shi Y, Pan X, Song X, Huang Z, et al. Association of polymorphisms in the human IL-10 and IL-18 genes with rheumatoid arthritis. Mol Biol Rep. 2011;38(1):379–85.CrossRefPubMedGoogle Scholar
  29. 29.
    El-Omar EM, Carrington M, Chow WH, McColl KE, Bream JH, et al. Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature. 2000;404:398–402.CrossRefPubMedGoogle Scholar
  30. 30.
    Loh M, Koh KX, Yeo BH, Song CM, et al. Meta-analysis of genetic polymorphisms and gastric cancer risk: variability in associations according to race. Eur J Cancer. 2009;45:2562–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Xue H, Lin B, Ni P, Xu H, Huang G. Interleukin-1B and interleukin-1 RN polymorphisms and gastric carcinoma risk: a meta-analysis. J Gastroenterol Hepatol. 2010;25:1604–17.CrossRefPubMedGoogle Scholar
  32. 32.
    Jin L, Yuan RQ, Fuchs A, Yao Y, Joseph A, et al. Expression of interleukin-1beta in human breast carcinoma. Cancer. 1997;80:421–34.CrossRefPubMedGoogle Scholar
  33. 33.
    Lewis AM, Varghese S, Xu H, Alexander HR. Interleukin 1 and cancer progression: the emerging role of interleukin-1 receptor antagonist as a novel therapeutic agent in cancer treatment. J Transl Med. 2006;4:48.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA, et al. Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood. 2001;98(8):2301–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Kagoya Y, Yoshimi A, Kataoka K, Nakagawa M, Kumano K, et al. Positive feedback between NF-kappaB and TNF-alpha promotes leukemia-initiating cell capacity. J Clin Investig. 2014;124(2):528–42.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Keutgens A, Robert I, Viatour P, Chariot A. Deregulated NF-kappaB activity in haematological malignancies. Biochem Pharmacol. 2006;72(9):1069–80.CrossRefPubMedGoogle Scholar
  37. 37.
    Zhou J, Ching YQ, Chng WJ. Aberrant nuclear factor-kappa B activity in acute myeloid Leukemia: from molecular pathogenesis to therapeutic target. Oncotarget. 2015;6(8):5490–500.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Riemann K, Becker L, Struwe H, Rübben H, Eisenhardt A, Siffert W. Insertion/deletion polymorphism in the promoter of NFκB1 as a potential molecular marker for the risk of recurrence in superficial bladder cancer. Int J Clin Pharmacol Ther. 2007;45(8):423–30.CrossRefPubMedGoogle Scholar
  39. 39.
    Xu L, Huang S, Chen W, Song Z, Cai S. NFKB1 −94 insertion/deletion polymorphism and cancer risk: a meta-analysis. Tumor Biol. 2014;35(6):5181–7.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Hong Wang
    • 1
    • 2
  • Mingqiang Hua
    • 1
  • Shukang Wang
    • 3
  • Jie Yu
    • 1
  • Chen Chen
    • 1
  • Xueyun Zhao
    • 1
  • Chen Zhang
    • 1
  • Chaoqin Zhong
    • 1
  • Ruiqing Wang
    • 1
  • Na He
    • 1
  • Ming Hou
    • 1
  • Daoxin Ma
    • 1
    Email author
  1. 1.Department of Hematology, Qilu HospitalShandong UniversityJinanPeople’s Republic of China
  2. 2.Department of HematologyZibo Central HospitalZiboPeople’s Republic of China
  3. 3.Department of Epidemiology and Biostatistics, School of Public HealthShandong UniversityJinanPeople’s Republic of China

Personalised recommendations